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Abstract

Recently, the Internet of Things (IoT) has gained momentum in connecting everyday

objects to the Internet and facilitating machine-to-human and machine-to-machine

communication with the physical world. IoT offers the capability to connect and

integrate both digital and physical entities, enabling a whole new class of applications

and services.

This thesis firstly reviews the state-of-the-art research efforts in IoT from data-

centric perspectives, including data stream processing, data storage models, complex

event processing, and searching in IoT by identifying an IoT data taxonomy, which

includes ten key data elements of IoT data under three categorizations. In this the-

sis, we focus ourselves on three aspects of data management in IoT: data dynamics,

data velocity, and data incompleteness. More specifically, we study data dynamics in

dynamic graphs, handle data velocity in streams, and tackle data incompleteness via

sharing.

In IoT, connections and relations between things are universal and highly dynamic.

It is natural to model these connections and relations using dynamic graphs. Mean-

while, shortest path computation is one of the most fundamental operations for man-

aging and analyzing graphs. In this thesis, we focus on the problem of computing

the shortest path distance in graphs subject to edge failures. We propose SIEF, a

Supplemental Index for Edge Failures in a dynamic graph, which is based on distance

labeling, to support distance queries in dynamic graphs with edge failures efficiently.



x

In IoT, one challenging issue is how to disseminate streaming data to relevant

consumers efficiently. Semantic technologies aim to facilitate machine-to-machine

(M2M) communication and are attracting more and more interest from both academia

and industry, especially in the emerging IoT. This thesis leverages semantic tech-

nologies, such as Linked Data, which can facilitate M2M communications to build

an efficient information dissemination system for semantic IoT. The system inte-

grates Linked Data streams generated from various data collectors and disseminates

matched data to relevant data consumers based on triple pattern queries registered in

the system by the consumers. We also design new data structures, TP-automata and

CTP-automata, to meet the high performance needs of Linked Data dissemination.

To tackle data incompleteness, we consider large-scale information sharing sce-

narios among mobile objects in IoT. By leveraging semantic techniques, we propose

broadcasting Linked Data on-air to allow simultaneous access to the information and

to achieve better scalability. We introduce a novel air indexing method to reduce

the information access latency and energy consumption. We also study the data

placement problem of periodic XML data broadcast in IoT environments to facilitate

data sharing in IoT. Taking advantage of the structured characteristics of XML data,

we present a theoretical analysis on the XML data placement on a wireless channel,

which forms the basis of our novel data placement algorithm.

This thesis also discusses on-going and emerging IoT applications, and open re-

search issues for processing and managing IoT data. Several representative domains

where IoT can make profound changes are explored, and some key directions for

future research and development from a data-centric perspective are identified.
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Chapter 1

Introduction

1.1 Background

The Internet is a global system of networks interconnecting computers using the stan-

dard Internet protocol suite. It has significant impact on the world as it can serve

billions of users worldwide. Millions of private, public, academic, business, and gov-

ernment networks, of local to global scope, all contribute to the formation of the

Internet. The traditional Internet has a focus on computers and can be called the Inter-

net of Computers. In contrast, evolving from the Internet of Computers, the Internet

of Things (IoT) emphasizes things rather than computers [1]. It aims to connect ev-

eryday objects, such as coats, shoes, watches, ovens, washing machines, bikes, cars,

even humans, plants, animals, and changing environments, to the Internet to enable

communication/interactions between these objects. The ultimate goal of IoT is to en-

able computers to see, hear and sense the real world. It is predicted by Ericsson that

the number of Internet-connected things will reach 50 billion by 2020. Electronic

devices and systems exist around us providing different services to the people in dif-

ferent situations: at home, at work, in their office, or driving a car on the street [2].

IoT also enables the close relationship between human and opportunistic connection

of smart things [3].
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“Changes brought about by the Internet will be dwarfed by those prompted by

the networking of everyday objects”, says a report by the United Nation (UN) [4].

IoT is widely regarded as the number one of top 10 technologies that will change the

world in the next 10 years [5]. The National Intelligence Council [6] foresees that “by

2025, Internet nodes may reside in everyday things− food packages, furniture, paper

documents, and more. Widespread diffusion of an Internet of Things (IoT) could

contribute invaluably to economic development."

Internet of Computers Internet of Things

Fig. 1.1 Internet of Computers v.s. Internet of Things
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There are several definitions or visions of IoT from different perspectives. From

the viewpoint of services provided by things, IoT means “a world where things can

automatically communicate to computers and each other providing services to the ben-

efit of the human kind" [7]. From the viewpoint of connectivity, IoT means “from any-

time, anyplace connectivity for anyone, we will now have connectivity for anything"

[8]. From the viewpoint of communication, IoT refers to “a world-wide network of

interconnected objects uniquely addressable, based on standard communication pro-

tocols" [9]. Finally, from the viewpoint of networking, IoT is the Internet evolved

“from a network of interconnected computers to a network of interconnected objects"

[10].

We focus on our study of the Internet of Things from a data perspective. As shown

in Fig. 1.1, data is processed differently in the Internet of Things and traditional

Internet environments (i.e., Internet of Computers). In the Internet of Computers, both

the main data producers and consumers are human beings. However, in the Internet

of Things, the main actors become things, which means things are the majority of

data producers and consumers. Therefore, we give our definition of the Internet of

Things as follows:

“In the context of the Internet, addressable and interconnected things, instead

of humans, act as the main data producers, as well as the main data consumers.

Computers will be able to learn and gain information and knowledge to solve real

world problems directly with the data fed from things. As an ultimate goal, computers

enabled by the Internet of Things technologies will be able to sense and react to the

real world for humans.”

As of 2012, 2.5 quintillion (2.5× 1018) bytes of data are created daily1. In IoT,

connecting all of the things that people care about in the world becomes possible. All

these things would be able to produce much more data than nowadays. The volumes

of data are vast, the generation speed of data is fast and the data/information space is

1http://www-01.ibm.com/software/data/bigdata/



4 Introduction

global [2]. Indeed, IoT is one of the major driving forces for big data analytics. Given

the scale of IoT, topics such as storage, distributed processing, real-time data stream

analytics, and event processing are all critical, and we may need to revisit these areas

to improve upon existing technologies for applications of this scale.

1.2 Research Scope and Contributions

This thesis presents research on data management in the context of IoT from three as-

pects, including data dynamics, data velocity, and data incompleteness. More specif-

ically, we study data dynamics in dynamic graphs, handle data velocity in streams,

and tackle data incompleteness via sharing. The main contributions of this thesis can

be summarized in the following.

Survey on State-of-the-Art Data Techniques for IoT

This thesis reviews the state-of-the-art research efforts in IoT from data-centric per-

spectives, including data stream processing, data storage models, complex event pro-

cessing, and searching in IoT by identifying an IoT data taxonomy, which includes ten

key data elements of IoT data under three categorizations. This thesis also discusses

on-going and emerging IoT applications, and open research issues for processing and

managing IoT data. Several representative domains where IoT can make profound

changes are explored, and some key directions for future research and development

from a data-centric perspective are identified.

Efficiently Answering Distance Queries in a Graph with Edge Failures

In IoT, connections and relations between things are universal and highly dynamic. It

is natural to model these connections and relations using dynamic graphs. Meanwhile,

shortest path computation is one of the most fundamental operations for managing
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and analyzing graphs. In this thesis, we focus on the problem of computing the short-

est path distance in graphs subject to edge failures. We propose SIEF, a Supplemental

Index for Edge Failures in a dynamic graph, which is based on distance labeling, to

support distance queries in dynamic graphs with edge failures efficiently.

Disseminating Linked Data Streams in the Context of IoT

This thesis leverages semantic technologies, such as Linked Data, which can facil-

itate machine-to-machine (M2M) communications to build an efficient information

dissemination system for semantic IoT. The system integrates Linked Data streams

generated from various data collectors and disseminates matched data to relevant data

consumers based on triple pattern queries registered in the system by the consumers.

In thesis, we also designs new data structures, TP-automata and CTP-automata, to

meet the high performance needs of Linked Data dissemination.

Broadcasting Linked Data in IoT to Achieve Data Sharing

To tackle data incompleteness, this thesis studies large-scale information sharing sce-

narios among mobile objects in IoT. By leveraging semantic techniques, this thesis

proposes to broadcast Linked Data on-air to allow simultaneous access to the infor-

mation and to achieve better scalability. Specifically, this thesis introduces a novel air

indexing method to reduce the information access latency and energy consumption.

Broadcasting XML Data in IoT to Achieve Data Sharing

In the past decades, XML has become prevalent in ubiquitous and mobile computing

devices and applications around the world. The sharing and dissemination of XML

data is more and more important in the IoT era where the number of smart devices is

unprecedented. This thesis investigates the data placement problem of periodic XML

data broadcast in IoT environments to facilitate data sharing in IoT. Taking advantage
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of the structured characteristics of XML data, this thesis presents a theoretical analy-

sis on the XML data placement on a wireless channel, which forms the basis of the

proposed novel data placement algorithm.

1.3 List of Publications

During my PhD study, I have published/produced 20 publications. The following

eight publications are the core publications resulting from this thesis. I am very grate-

ful to all of the people who collaborated with me for these publications. Their com-

ments and suggestions were very helpful and insightful. I would also like to thank

anonymous reviewers for their valuable comments on earlier drafts of these publica-

tions.

1. Yongrui Qin, Quan Z. Sheng, Muntazir Mehdi, Hua Wang, Dong Xie, “Ef-

fectively Delivering XML Information in Periodic Broadcast Environments”,

In Proceedings of the 24th International Conference on Database and Expert

Systems Applications (DEXA), Pages 165–179, 2013.

2. Yongrui Qin, Quan Z. Sheng, Nickolas J.G. Falkner, Ali Shemshadi, Edward

Curry, “Towards Efficient Dissemination of Linked Data in the Internet of

Things”, In Proceedings of the 23rd ACM Conference on Information and Knowl-

edge Management (CIKM), pages 1779–1782, 2014.

3. Yongrui Qin, Quan Z. Sheng, Nickolas J.G. Falkner, Wei Emma Zhang, Hua

Wang, “Indexing Linked Data in a Wireless Broadcast System with 3D Hilbert

Space-Filling Curves”, In Proceedings of the 23rd ACM Conference on Infor-

mation and Knowledge Management (CIKM), pages 1775–1778, 2014.

4. Yongrui Qin, Quan Z. Sheng, Wei Emma Zhang, “SIEF: Efficiently Answer-

ing Distance Queries for Failure Prone Graphs”, In Proceedings of the 18th
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International Conference on Extending Database Technology (EDBT), pages

145–156, 2015.

5. Yongrui Qin, Quan Z. Sheng, Nickolas J.G. Falkner, Ali Shemshadi, Edward

Curry, “Batch Matching of Conjunctive Triple Patterns over Linked Data Streams

in the Internet of Things”, In Proceedings of the 27th International Conference

on Scientific and Statistical Database Management (SSDBM), Article No. 41,

6 pages, 2015.

6. Yongrui Qin, Quan Z. Sheng, Edward Curry, “Matching Over Linked Data

Streams in the Internet of Things”, IEEE Internet Computing 19(3): 21-27

(2015).

7. Yongrui Qin, Quan Z. Sheng, Nickolas J.G. Falkner, Schahram Dustdar, Hua

Wang, Athanasios V. Vasilakos, “When Things Matter: A Data-Centric View

of the Internet of Things”, submitted to Journal of Network and Computer Ap-

plications (JNCA) (currently under revision).

8. Yongrui Qin, Quan Z. Sheng, Hua Wang, Nickolas J.G. Falkner, “Organizing

XML Data in a Wireless Broadcast System by Exploiting Structural Similarity”,

submitted to Journal of Network and Computer Applications (JNCA) (currently

under revision).

1.4 Thesis Organization

The remainder of the thesis is organized as follows.

Chapter 2 systematically reviews the key technologies related to the development

of IoT and its applications, particularly from a data-centric perspective. The aim

of this chapter is to provide a better understanding of the current research activities

related to data management in IoT. Specifically, this chapter reviews and compares



8 Introduction

technologies including data streams, data storage models, searching, and event pro-

cessing technologies, which play a vital role in enabling the vision of IoT.

Chapter 3 focuses on the problem of computing the shortest path distance in

graphs subject to edge failures. SIEF is proposed, which is a Supplemental Index

based on distance labeling for Edge Failures in a dynamic graph. This chapter firstly

introduces concepts related to 2-hop distance labeling and then exploits properties

of distance labeling in static graphs to compute very compact distance labeling for

answering distance queries in dynamic graphs.

Chapter 4 leverages semantic technologies, such as Linked Data, to build an

efficient information dissemination system for semantic IoT. The system integrates

Linked Data streams generated from various data collectors and disseminates matched

data to relevant data consumers based on triple pattern queries registered in the system

by the consumers. Two new data structures are designed, namely TP-automata and

CTP-automata, to meet the high performance needs of Linked Data dissemination.

Chapter 5 describes how to broadcast Linked Data on-air using RDF format to

allow simultaneous access to the information and to achieve better scalability. A

novel air indexing method based on 3D Hilbert curves is introduced to reduce the

information access latency and energy consumption. A novel search algorithm is also

designed to efficiently evaluate queries against the air indexes.

Chapter 6 takes advantage of the structured characteristics of XML data and pro-

poses algorithms to effectively broadcast XML data in a periodic broadcast environ-

ment. This chapter provides theoretical analysis on the XML data placement on a

wireless channel, which forms the basis of the novel data placement algorithm.

Chapter 7 describes potential IoT applications from several representative appli-

cation domains. Open research issues are also discussed in this chapter.

Chapter 8 concludes this thesis and discusses several possible directions for future

work.



Chapter 2

Literature Review

This chapter focuses on reviews of the main techniques and state-of-the-art research

efforts in IoT from data-centric perspectives, including data stream processing, data

storage models, complex event processing, and searching in IoT. It is organized as

follows. Section 2.1 identifies a taxonomy that contains ten key elements of IoT data.

Section 2.2 reviews the data streaming techniques and Section 2.3 focuses on the data

models and storage technologies for IoT. Search and event processing technologies

are discussed in Sections 2.4 and 2.5, respectively.

2.1 IoT Data Taxonomy

In this section, we identify the intrinsic characteristics of IoT data and classify them

into three categories, including Data Generation, Data Quality, and Data Interoper-

ability. We also identify specific characteristics of each category, and the overall IoT

data taxonomy is shown in Fig. 2.1.

2.1.1 Data Generation

• Velocity. In IoT, data can be generated at different rates. For example, for GPS-

enabled moving vehicles in road networks, the GPS signal sampling frequency
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could be every few seconds, every few minutes, or even every half an hour.

But some sensors can scan at a rate up to 1,000,000 sensing elements per sec-

ond1. On one hand, it is challenging to handle very high sampling rates, which

require efficient processing of the fast generated data. On the other hand, it is

challenging to deal with low sampling rates, due to the fact that some important

information may be lost for data processing and decision making.

• Scalability. Since things are able to continuously generate data together with

the foreseeable excessively large number of things, the IoT data is expected to

be at an extremely large scale. It is easy to imagine that, in IoT data processing

systems, scalability will be a long standing issue, aligning with the current Big

Data trend.

• Dynamics. There are many dynamic elements within IoT data. Firstly, many

things are mobile, which will lead to different locations at different times. Since

they will move to different environments, the sensing results of things will be

changing to reflect the real world. Secondly, many things are fragile. This

means the generated data will change over time due to the failure of things.

Thirdly, the connections between things could be intermittent. This also creates

dynamics in any IoT data processing system.

• Heterogeneity. There will be many kinds of things potentially connecting to

the Internet in the future, ranging from cars, robots, fridges, mobile phones, to

shoes, plants, watches, and so on. These kinds of things will generate data in dif-

ferent formats using different vocabularies. In addition, there will be assorted

IoT data processing systems, which will provide data in customized formats to

tailor different data needs.

1https://www.tekscan.com/support/faqs/what-are-sensors-sampling-rates
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Fig. 2.1 IoT Data Taxonomy

2.1.2 Data Quality

• Uncertainty. In IoT, uncertainty may come from different sources. In RFID

data, the uncertainty can refer to missing readings, readings of non-existing

IDs, etc. In wireless sensor networks, uncertainty can refer to sensing precision

(the degree of reproducibility of a measurement), or accuracy (the maximum

difference that will exist between the actual value and the indicated value), etc.

• Redundancy. Redundancy can be easily observable in IoT. For example, in

RFID data, the same tags can be read multiple times at the same location (be-

cause multiple RFID readers exist at the spot or tags are read multiple times

at in the same spot) or at different locations. In wireless sensor networks, a

group of sensors of the same type may be deployed in a nearby area, which can

produce similar sensing results of that area. For the same sensor, due to the

possible high sampling rates, redundant sensing data can be produced.

• Ambiguity. Dealing with a large amount of ambiguity in IoT data is inevitable.

The data produced by assorted things can be interpreted in different ways due

to different data needs from different things or other data consumers. Such data

can be useful and important to any other kind of things, which brings about
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the challenges of proper interpretation of the produced data to different data

consumers.

• Inconsistency. Inconsistency is prevalent in IoT data. For example, in RFID

data, inconsistency can occur due to missing readings of tags at some locations

along the supply chain. It is easy to observe inconsistency in sensing data

as when multiple sensors are monitoring the same environment and reporting

sensing results. Due to the precision and accuracy of the sensing process and

other problems including packet loss during transmission, data inconsistency is

also an intrinsic characteristics in sensing data.

2.1.3 Data Interoperability

• Incompleteness. In order to process IoT data, being able to detect and react

to events in real-time, it is important to combine data from different types of

data sources to build a big and complete picture of relevant backgrounds of the

real world. However, as this process relies on the cooperation of mobile and

distributed things who are generating relevant background data, incompleteness

is easily observable in IoT data. Suppose there are a large number of available

data sources. it is of great importance to determine which data sources can best

address the incompleteness of data for a given data processing task.

• Semantics. To address the challenges posed by the deluge of IoT data, things,

or machines acting as the major data consumers should be a promising trend for

data processing in the IoT era. Inspired by Semantic Web technologies, in order

to enable machines to understand data for human beings, injecting semantics

into data could be an initial step. Therefore, semantics within IoT data will play

an important role in the process of enabling things/machines to understand and

process IoT data by themselves.
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2.2 Data Streams

A data stream is a sequence of data objects, of which the number is potentially un-

bounded. A data stream may be continuously generated at a rapid rate. In the data

stream, each data object can be described by a multi-dimensional attribute vector

within a continuous, categorical, or mixed attribute space [11]. There are some typi-

cal characteristics of data streams:

• Continuous arrival of data objects

• Disordered arrival of data objects

• Potentially unbounded size of a stream

• Normally no persistence of data objects after being processed

• Changing probability distributions of the unknown data generation process

Due to the excessive amount of data produced by all kinds of things in the era of

IoT, data streams play an important role in data processing and analysis. This section

will focus on related data stream research efforts that can help handle IoT data. Our

discussions include general data stream processing, RFID data stream processing, and

RDF triple stream processing.

2.2.1 General Data Stream Processing

Data streams can be generated in various scenarios, including a network of sensor

nodes, a stock market or a network monitoring system and so on. In many scenarios

such as the sensor network scenario, sensor nodes are normally powered by batter-

ies or solar panels. Therefore, in typical a sensor data processing system, one of the

challenging issues is power constraints. In most applications, communication across

sensor networks or with a centralized server requires the largest amount of energy as
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sensing consumes less energy [12]. If sensor nodes send their raw sensing data to

a server without consideration of the amount of energy needed to communicate, the

battery life of the sensor nodes could be drastically reduced. Consequently, sensor

data processing techniques, including data aggregation, data compression, modeling

and online querying, should be performed on-site or in-network to reduce commu-

nication cost [12]. Furthermore, numerous demands on efficient data processing al-

gorithms for sensor systems arise due to the limitations of computational power of

sensor nodes as well as the existence of inaccuracy and bias in the sensor readings.

In other scenarios, such as stock market and network monitoring systems, there also

exist challenges in processing high-rate data streams.

Query Processing

There are several important queries to be considered [12]:

• Aggregate Queries. Aggregate queries are an important class of queries in sen-

sor systems, including MIN, COUNT and AVG operators. Various techniques

have been proposed to efficiently process these aggregate operators in sensor

systems, which can help to effectively reduce power consumption. Consider-

ing the properties of the aggregate functions, the in-network partial data could

be preprocessed first, which can then be utilized to produce the final results for

the issued queries.

• Join Queries. An example of join queries is “Return the objects that were de-

tected in both regions R1 and R2" [12]. To evaluate the query, stream readings

from the sensors in regions R1 and R2 should be joined first before we can

determine whether an object was detected in the two designated regions. Join

queries are useful in many applications, such as monitoring an environment

where multiple sensors are deployed, tracking moving objects that are moni-

tored by several types of sensors, etc.
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• Top-k Monitoring. The general problem of monitoring top-k values from dis-

tributed data streams is investigated in [13]. A technique is proposed to ensure

the validity of the most recently communicated top-k answers by maintaining

some specified arithmetic constraints at the stream sources. User specified er-

ror tolerance is also considered in order to provide high-quality answers. This

technique can help reduce the overall communication cost between different

sources.

• Continuous Queries. To monitor designated changes in an environment, sen-

sors are typically required to answer queries in continuous manner. For in-

stance, motion or sound sensors might be used to evaluate some continuous

queries, such as “Turn lights off if no motion is detected in area A in the past

10 minutes". When the query constraints are satisfied, the action of turning

lights off could be automatically triggered by these sensors. If there is more

than one continuous query evaluated over the same sensor readings, the storage

and computation can be optimized by exploiting the fact that the sources of the

queries and their partial results could overlap [12].

In IoT, query processing over streaming data will need to focus more on IoT re-

lated aspects of the streaming data, such as uncertainty, ambiguity and inconsistency.

Furthermore, it is also imperative to address issues related to velocity and heterogene-

ity. We list a few examples of issues in the following.

• How can one efficiently aggregate the information stream from more than one

thing with a large amount of ambiguity and inconsistency?

• How can one perform accurate join queries over uncertain IoT data streams

with ambiguous and incomplete information?

• How can one identify top-k values from millions of heterogeneous IoT data

streams efficiently and effectively?
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• How can one monitor changes based on continuous queries from a large number

of dynamic, fast, heterogeneous and incomplete IoT data streams, etc?

• New types of queries may also need to be considered, such as source selection

queries for overcoming data incompleteness, and so on.

Stream Mining

Stream mining can extract useful rules/information from data streams. Some typical

tasks for stream mining are listed in the following:

• Clustering. Clustering is the task of grouping a set of objects in such a way that

objects in the same group (called a cluster) are more similar to each other than

to those in other groups (clusters). Clustering techniques for data streams typ-

ically continuously cluster objects on memory constrained devices with some

time limitations. Due to these restrictions, there are some requirements to con-

sider when designing algorithms for clustering data streams [14]: (i) providing

clustering results via fast and incremental processing of data objects; (ii) rapidly

detecting new clusters or changes of existing clusters; (iii) scaling to the poten-

tially unbounded number of objects in data streams; (iv) providing a model

representation that is consistently compact regardless the number of data ob-

jects; (v) rapidly detecting the presence of outliers and acting accordingly; and

(vi) dealing with different data types, such as XML trees, DNA sequences, GPS

temporal and spatial information.

• Classification. Classification uses prior knowledge to guide the partitioning

process to construct a set of classifiers to represent the possible distribution of

patterns [15]. Basically, compared with clustering, classification is a supervised

learning process whereas clustering is an unsupervised learning process. More

formally, a typical classification algorithm can be defined as follows [15]: given
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a predefined classifier and two sets of data, labeled data and unlabeled data, the

labeled data is used to train the classifier and the unlabeled data can then be

classified by the trained classifier.

• Outlier and Anomaly Detection. In outlier and anomaly detection, the main

task is to find data points that are most different from the remaining points in

a given data set. Most existing outlier detection algorithms are based on the

distance between every pair of points. The points that are most distant from all

other points will be marked as outliers [16]. To be more specific, an object O in

a dataset T is a DB(p,D)-outlier (DB here refers to distance-based) if at least

fraction p of the objects in T lies greater than distance D from O. This kind

of algorithms suffer from the same performance issue as they all run in O(n2)

time. Hence, it is difficult to extend such approaches to distributed streaming

data sets because points in those data sets normally arrive at multiple distributed

end-points and must be processed incrementally.

• Frequent Itemset Mining. Frequent itemset mining is to find sets of items or

values that co-occur frequently, or in other words, to find co-occurrence rela-

tionships in a transactional data set. Here a transactional data set refers to a

data set where a set of items appear together in some specified context. Given

a predefined support s, the goal in frequent itemset mining is to find all subsets

of items that occur at least s number of times, or in other words, that appear in

at least s transactional data sets at hand. Frequent itemset mining is both CPU

and I/O intensive. Therefore, it is costly to completely re-mine a dynamic data

set, which will be a typical case in IoT.

In IoT, multiple data streams processing would be more preferable as data streams

can be generated at anywhere around the world and can be accessed globally via the

Internet if being made public. For example, SmartSantander2 proposes a city-scale ex-

2http://www.smartsantander.eu/
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perimental research facility in support of typical applications and services for a smart

city. Around 20,000 sensors have been deployed to provide a variety of services, such

as static environmental monitoring, mobile environmental monitoring, parks and gar-

dens irrigation, outdoor parking area management, guidance to free parking lots and

traffic intensity monitoring. A large number of data streams have to be processed

efficiently to provide real-time monitoring of a smart city. Furthermore, how to effi-

ciently and effectively mine IoT data streams that are highly dynamic, heterogeneous,

uncertain, ambiguous, inconsistent, and incomplete will also require a revisit of the

existing streaming mining techniques.

2.2.2 RFID Data Stream Processing

In 2003, a nonprofit open forum called the Ubiquitous ID Center3 was established.

So far, more than 500 companies and organizations worldwide have contributed to it,

publishing uID standards and industrial open standard specifications. uID standards

are based on the uID architecture [17], which identifies real-world entities via Radio-

Frequency Identification (RFID) tags or barcodes, determines contextual information

such as environmental parameters from networked sensors, and adapts information

services according to the data it obtains.

RFID systems consist of radio frequency (RF) tags (also called transponders) and

RF tag readers (also called transceivers). Readers may be able to both read data

from and write data to a transponder. RFID is an established electronic identification

technology that enables real-time monitoring and tracking applications in a variety of

domains. Object identification information is stored on an RFID tag. This could be

an Electronic Product Code (EPC)4. EPC is a unique item identification code, which

normally contains information about the manufacturer, the type of item and the serial

number of the item (the tag ID). Streams of RFID reading data, whose basic form is

3uID Center: www.uidcenter.org
4http://www.epc-rfid.info/
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a triplet < tag_id; reader_id; timestamp >, raise new challenges since the data may

be insufficient, incomplete, and voluminous [18].

In the past decade, the Auto-ID Center, now which is called the Auto-ID Labs5,

has attracted industrial interests from companies and government initiatives to ad-

vance new developments and interests in RFID technology. One of the important

advances is the so-called “Networked RFID" [19]. Networked RFID aims at connect-

ing isolated RFID systems and software via the Internet. The EPcglobal Network,

initially designed by the Auto-ID Labs and then further developed by EPCglobal at

GS16, is one of the notable efforts for Networked RFID.

In the following, we review some major RFID data stream processing techniques

and summarize them in Table 2.1.

RFID Data Cleaning (Uncertainty and Unreliability)

SMURF (Statistical sMoothing for Unreliable RFid data) [20] is the first declara-

tive, adaptive smoothing filter for cleaning raw RFID data streams. Unlike conven-

tional techniques which expose the smoothing window parameter to the application,

SMURF adapts the window size automatically and continuously over the lifetime of

the system based on observed readings.

Periods of dropped readings and periods when a tag has moved are difficult to

distinguish, which poses some challenges for the design of SMURF. To overcome

such difficulty, a statistical sampling-based approach is put forward in SMURF. The

main motivation is that RFID data streams can be modeled as a random sample of the

tags in a reader’s detection range. This sample-based view of observed RFID readings

enables SMURF to develop algorithms based on statistical sampling theory to adapt

the window size effectively.

5http://www.autoidlabs.org
6http://www.gs1.org/
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Basically, the false reads in RFID streams can be classified into two categories

[21]:

• Missing-Reads. Though an RFID tag is located in the range of a reader, it might

not be read at all, thereby leading to a false prediction that the tag is not present.

This may be caused by the weakness of RF signal, shortage of power, shield of

signal between the tag and the reader, and the collision between tags. This type

of errors is also referred as false negative.

• Cross-Reads. When an RFID tag locates outside the range of a reader, but

it might be captured by this reader which leads another false prediction that

the object is present in the scope of this reader (sometimes called ghost read-

ing). Cross-reads may be arisen by the reflection of metal items, the abrupt

strengthen of RF, and the change of antenna directions. This type of errors is

also called false positive.

SMURF cannot eliminate the cross-reads generated by physical factors. A kernel

density-based probability cleaning method, called KLEAP, can be used to filter the

cross-reads in RFID data streams [21]. KLEAP considers cross-reads as outliers, thus,

the determination of cross-reads is transformed into the issue of detecting outliers on

data streams. The density-based methods often perform better than the distance-based

one, so KLEAP applies the density-based methods to detect cross-reads. It detects

the exact positions of tags over the RFID data streams through examining the kernel

densities of each tag captured by multiple readers.

The knowledge on the map of the real world and on the motility characteristics

(such as the maximum speed) of the monitored objects is exploited by [22]. From this

knowledge of the domain, constraints can be naturally derived on the connectivity be-

tween pairs of locations (direct unreachability constraints) and/or on the time needed

for reaching a location starting from another one (traveling-time constraints). These

constraints can be used to discard interpretations of the data corresponding to incon-
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sistent trajectories. Then a graph is built in the following way: its nodes correspond to

pairs < location, timestamp> and inside the graph, paths from source to target nodes

one-to-one correspond to the valid trajectories in real word. Each node or edge is as-

signed a probability obtained by revising the a priori probability of the corresponding

pair < location, timestamp>, so that the overall probability of a source-to-target path

is the conditioned probability of the corresponding trajectory. In this way, trajectories

of RFID-monitored objects can be cleaned.

RFID Data Inference and Compression

RFID data inference techniques are closely related to RFID data cleaning techniques

because inference techniques will need to clean RFID data first and then they can infer

to the high level information about the tagged objects, i.e., location and containment

relationships. Since raw RFID data contains a large amount of redundancies, RFID

data compression is also applied to reduce space requirements after inference results

have been obtained. RFID data compression is a further step beyond inference, where

compression is performed based on the results of inference to remove the redundant

data.

Noisy, raw data streams from mobile RFID readers are considered and a proba-

bilistic approach to translate these streams into clean, rich event streams with location

information is empoyed by [23]. Their probabilistic model is built based on the mo-

bility of the reader, object dynamics, and noisy readings. Particle filtering is used to

infer clean information about object locations from raw streams captured from mobile

RFID readers.

The aforementioned data cleaning and inference techniques focus on smoothing

over time, where containment relationships are not considered. Containment refers

to inter-object relationships, e.g., containment between objects, cases, and pallets.

Containment queries can be useful for enforcing packaging and shipping regulations.
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Table 2.1 Comparisons of RFID Streaming Techniques.

Approach Vel Sca Dyn Het Unc Red Amb Incs Incp Sem

SMURF [20]
√ √

KLEAP [21]
√ √ √

Mobility-Monitoring
[22]

√ √ √ √ √

Mobile-RFID-Data-
Cleaning [23]

√ √ √ √

RFID-Data-Cleaning
(Containment) [24, 25]

√ √ √ √ √

Note: Key elements that have been considered.

Vel: Velocity Sca: Scalability Dyn: Dynamics Het: Heterogene-
ity

Unc: Uncer-
tainty

Red: Redundancy Amb: Ambiguity Incs: Inconsis-
tency

Incp: Incompleteness Sem: Semantics

Some examples of containment queries have been provided by [24], such as “raise an

alert if a flammable item is not packed in a fireproof case" or “verify that the food

containing peanuts is never exposed to other food cases for more than an hour". They

also observe that some known containment relations can be used to determine object

locations by smoothing over these facts. For example, suppose that we can infer that

a specific set of objects have been packed in the same container. According to such

knowledge, if one object in the container is read, all of the other objects must be in

the same place. However, the fact is that the containment relationships are not known

in advance. Therefore, a graphic model is proposed to infer containment relationships

and to detect changes in containment relationships [24, 25].

2.2.3 RDF Triple Stream Processing

Linked Data is a method for publishing structured data and interlink such data to make

it more useful. It builds upon standard Web technologies such as HTTP, RDF and

URIs and extends these technologies to share information. Linked Data is format that

can be used to encode data. Computers can understand the encoded data generated
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by things. Therefore, data from different sources can be connected and queried in

the form of Linked Data. Basically, Linked Data refers to a set of best practices to

be followed in order to publish and link data on the Web, using the following basic

principles7:

• Use URIs as names for things.

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful information, using appropriate

standards (RDF, SPARQL).

• Include links to other URIs, so that more things can be discovered.

The concept of Linked Stream Data applies the Linked Data principles to stream-

ing data, so that data streams can be published as part of the Web of Linked Data.

Stream reasoning can provide the abstractions, foundations, methods and tools re-

quired to integrate data streams, the Semantic Web and reasoning systems. Substan-

tial research efforts have been put forward, focusing on how to apply reasoning on

streaming data, how to publish raw streaming data and connect them to the existing

data sets on the Semantic Web, and how to extend the SPARQL query language to

process streaming data [26]. These research efforts lay some foundations of semantic

IoT technologies, facilitating machine-to-machine communication in IoT.

Linked Stream Processing and Reasoning

Efforts to apply the linked data principles to stream (sensor) data have been initiated

and this wealth of information could be easily included in the Linked Data cloud8.

There are three typical streaming RDF/SPARQLS engines, including Streaming

SPARQL [27], SPARQLStream [28], C-SPARQL [29], and EP-SPARQL [30]. Each

7http://www.w3.org/DesignIssues/LinkedData.html
8http://linkeddata.org/
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Table 2.2 Comparisons of Linked Stream Processing and Reasoning.

Approach Native Aggregation
Support

Reasoning
Support

SPARQL
1.1 Support

Streaming SPARQL
[27]

No Limited Limited Limited

SPARQLStream
[28]

No Limited Limited Limited

C-SPARQL [29] No Rich Limited Limited
EP-SPARQL [30] No Limited Rich Limited
CQELS [31] Yes Limited Limited Limited

of these systems also proposes its own SPARQL extension for streaming data process-

ing. In these studies, SPARQL has been extended to have sliding window operators

for RDF stream processing.

For example, Streaming SPARQL extends SPARQL to support window operators.

But it does not consider performance issues, specially when designing the data struc-

tures. Further, it does not consider the sharing of computing states for continuous

execution. Another example is SPARQLStream, which aims at enabling ontology-

based access to streaming data. It defines a SPARQLStream language, which can be

translated into another relational stream language based on mapping rules.

C-SPARQL (Continuous SPARQL) [29] attempts to facilitate reasoning upon

rapidly changing information. In C-SPARQL, continuous queries are divided into

static and dynamic parts and streaming data is transformed into non-streaming data

within a specified window in order to apply standard algebraic operations, such as ag-

gregate functions like COUNT, COUNT DISTINCT, MAX, MIN and AVG. The

static parts will be loaded into relations, and the continuous queries are executed by

processing the stream data against these relations. Event Processing SPARQL (EP-

SPARQL), a language to describe event processing and stream reasoning, can be

translated to ETALIS [30], a Prolog-based complex event processing framework.

Different from the above approaches, CQELS [31] is a native streaming RDF/SPARQL

system built from scratch. CQELS defines and implements a native processing model
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in the query engine. Its query execution framework can also dynamically adapt the

query processor to changes in the input data. By using data encoding and caching of

intermediate query results, CQELS reduces external disk access on large Linked Data

collections. Some indexing techniques are also adopted to enable faster data access.

Table 2.2 compares all these systems from various aspects.

Extracting RDF Triples from Unstructured Data Streams

Although the current Linked Open Data (LOD) cloud has tremendously grown over

the last few years, it delivers mostly encyclopedic information (such as albums, places,

kings, etc.) and fails to provide up-to-date information [32]. Based on such obser-

vation, they develop RdfLiveNews, an approach that allows extracting RDF from

unstructured (i.e., textual) data streams in a fashion similar to the live versions of

the DBpedia9 and LinkedGeoData10 datasets. RdfLiveNews takes unstructured data

streams as its input. It firstly removes duplicates in the streams. Then it uses the

cleaned streams as a basis to extract patterns for relations between known resources.

Next, the patterns will be clustered to labeled relations and finally will be used as a

basis for generating RDF triples.

2.3 Data Storage Models

The nature of data produced by the Internet of Things calls for a revisit of data storage

techniques, which will be further discussed in this section.

2.3.1 New Architecture

Traditional Database Management Systems (DBMSs) employ record-oriented (i.e., a

record is represented by a row in a relational table) storage systems. With this row

9http://live.dbpedia.org/sparql
10http://live.linkedgeodata.org/sparql
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store architecture, a single disk write is able to store a single record with multiple

attributes to disk. Records writes and updates are normally of high performance in

these systems. Therefore, a DBMS with a row store architecture can be called a

write-optimized system. In contrast, some systems need to deal with ad-hoc querying

of large amounts of data, where read performance is of more importance. For such

systems, read-optimized is the major design factor. Take data warehouses as an ex-

ample. They represent one class of read-optimized system. In these read-optimized

systems, a column-store architecture is a better choice. This is because in a column-

store system, the values for each single column (or attribute) are stored contiguously,

which can be easily optimized for high-performance querying.

C-Store, a column-store architecture that supports the standard relational logical

data model, has been designed by [33]. Compared with the traditional DMBS archi-

tecture, the major differences are: (i) data in C-Store is not physically stored using

its related relational logical data model; and (ii) whereas most row stores implement

physical tables directly and then add various indexes to speed access, C-Store im-

plements only projections. Here, projections are sorted subsets of the attributes of a

table. Furthermore, superior performance of column store based systems has been

shown over the major RDBMS (relational DBMS) system [34]. It is experimentally

demonstrated that specialized engines in the data warehouse, stream processing, text,

and scientific database markets can speed up the querying performance by 1-2 orders

of magnitude using the column-store architecture. They also suggest that the DBMS

vendors (and the research community) should start from scratch and design novel

systems for requirements to be fulfilled in the near future, rather than just adapting

current systems for those new requirements.
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2.3.2 Large-Scale Storage in Distributed Environments

Storage issues in large scale systems have arisen due to the arrival of the big data era.

For example, users of websites such as Facebook, Ebay and Yahoo! usually demand

fast response times. One solution for this is to replicate data across globally dis-

tributed datacenters. However, it is discovered that to replicate all data to all locations

may waste huge amounts of resources since users from different locations may have

different data consumption needs [35]. For example, a European server may not need

to maintain a replica of some rare accessed records in an Asian server. By exploiting

such observations, [35] propose a selective replica strategy which supports replica of

tables in the Web databases at record level to alleviate the overly-replicated issue. In

the selective replica strategy, each replica location stores a full or partial copy of the

replicated table depending on the data needs. Specifically, in each location, a given

record is stored either as a full replica or as a stub. A full replica is a normal copy

of the record and possibly some metadata for supporting the selective replica strat-

egy while a stub contains only the record’s primary key and metadata. In this way,

since large-scale Web databases are selectively replicated on a record-by-record basis,

bandwidth and disk costs can be saved.

Therefore, to meet the exceptional demands of data storage in IoT, developments

of large-scale, distributed storage systems are of essential. There are three factors or

requirements to be considered when designing a distributed storage system [36]:

• Consistency: Consistency means ensuring that multiple copies of the same data

are identical since server failures and parallel storage may cause inconsistency.

• Availability: Availability refers to the requirement that the entire distributed

storage system (which contains multiple servers) should not be seriously af-

fected by some extent of server failures and should be able to provide satisfac-

tory reading and writing performance.
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Table 2.3 Comparisons of three types of distributed storage systems.

Type Pros Cons Representatives

CA Single copy of data; Con-
sistency is easily ensured;
Availability is assured by
the excellent design of
databases

Could not handle net-
work failures

Traditional
small-scale rela-
tional databases

CP Maintain several copies of
the same data; A certain
level of fault tolerance is
ensured; Consistency is en-
sured by guaranteeing multi-
ple copies of data to be iden-
tical

Could not ensure
sound availability due
to the high cost for
consistency assurance

BigTable [38];
Hbase [39]

AP Maintain several copies of
the same data; A certain
level of fault tolerance is
ensured; Availability is as-
sured by the design of dis-
tributed storage systems

Strong consistency
is not ensured; May
cause a certain amount
of data errors

Dynamo [40];
Cassandra [41]

• Partition Tolerance: Since multiple servers are interconnected by a network

and the data is partitioned across the network, the distributed storage system

should have a certain level of tolerance to problems caused by network failures.

This refers to partition tolerance requirement.

Interestingly, it has been proven by [37] that a distributed storage system could

not simultaneously meet the requirements on consistency, availability, and partition

tolerance, and at most two of the three requirements can be satisfied at the same time.

On top of this theory, there are three types of distributed storage systems: (1) a CA

system, which ignores partition tolerance; (2) a CP system, which ignores availability;

and (3) an AP system, which ignores consistency. The comparisons of these systems

and some of their representative works are summarized in Table 2.3.
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2.3.3 Storage on Resource-Constrained Devices

Storage issues also arise in resource-constrained scenarios in IoT. For example, in

sensor networks, communication activity normally plays a more important role than

storage. But it is argued that for batch data collection, delay-tolerant mobile appli-

cations, and disconnected operations in static networks, the storage-centric paradigm

becomes more critical [42]. It is favored by decreasing costs and increasing capac-

ity of storage hardware. SQUIRREL is also proposed in the same work, which is

a lightweight run-time layer allocating data to different storage areas, based on data

size versus energy trade-offs.

SolarStore, a power storage service for solar-powered storage-centric sensor net-

works has been developed by [43]. The main goal of SolarStore is to improve the

total amount of data that can be eventually retrieved from the network. It adap-

tively balances data reliability against data sensing since solar energy is renewable

and dynamic. For example, it chooses to replicate data in the network until the next

opportunity to upload data to the server. The degree of data replication also varies

dynamically depending on the availability of solar energy and sensor storage.

Early database systems for sensor networks such as TinyDB and Cougar only act

as filters for data collection networks and not as databases, i.e., no data is stored

in, or retrieved from, any database. A database management system for resource-

constrained sensors named Antelope is presented by [44]. Antelope supports run-time

creation and deletion of databases and indexes and hence is a dynamic database sys-

tem. It is the first DBMS for resource-constrained sensor devices, which enables a

class of sensor network systems where every sensor holds a database. It is envisioned

that database techniques would become increasingly important in the progress of sen-

sor network applications and energy-efficient storage. Further, indexing and querying

would play important roles in emerging storage-centric applications.
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Besides, flash storage has been used for logging data on a sensor node, which is

called amnesic storage systems [45]. An amnesic storage system archives streaming

data using two key techniques: (i) data is compressed (usually with lossy compression

methods) in an online fashion before being archived; and (ii) an amnesic storage

system uses aging archived data by reducing the fidelity of older data to make space

for newer data.

2.4 Search Techniques

Searching and finding relevant objects from billions of things is one of the major

challenges for the future Internet of Things and can bring about huge potential impact

to humans. Supporting technologies for searching things in the IoT are very different

from those used in searching Web documents because things are tightly bound to

contextual information (e.g., location) and have no easily indexable properties (e.g.,

human readable text in the case of Web documents). In addition, the state information

of things is dynamic and rapidly changing. Things discovery calls for innovative

ways of managing and searching from dynamic data, which makes it different from

traditional Web searching. This section overviews the relevant areas such as the Deep

Web, Semantic Web and then discusses state-of-the-art techniques in searching things

in the IoT environments. We also summarize these techniques in Table 2.4.

2.4.1 Deep Web and Semantic Web

Deep Web refers to the portion of content on the World Wide Web that is not indexed

by standard search engines. Deep Web data is not directly being seen from Web pages

but is accessible typically via HTML forms from the Web pages. The size of the Deep

Web is estimated to be several orders of magnitude larger than that of the so-called

Surface Web (the Web that is accessible and indexable by text search engines).
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Table 2.4 Comparisons of Search Techniques.

Approach Vel Sca Dyn Het Unc Red Amb Incs Incp Sem

Twitter-Sensing [46]
√ √ √

Real-time-Micro-
Blogging-Search [47]

√ √ √ √

MIDAS-RDF [48]
√ √

Web-Search-from-
Structured-Databases
[49]

√ √ √ √ √

Similarity-based-Entity-
Search [50]

√ √ √ √ √

Snoogle [51]
√ √

MAX [52]
√ √

Microsearch [53]
√

Dyser [54]
√ √ √

Collaborative-Mobile-
Object-Sensing [55]

√ √ √

Note: Key elements that have been considered.
Vel: Velocity Sca: Scalability Dyn: Dynamics Het: Heterogene-

ity
Unc: Uncer-
tainty

Red: Redundancy Amb: Ambiguity Incs: Inconsis-
tency

Incp: Incompleteness Sem: Semantics

The Deep Web provides a wealth of hidden data in semi-structured form, accessi-

ble through Web forms and Web services. Since the data is hidden, to reach the whole

content of the World Wide Web by just following hyperlinks is impossible. Regard-

ing such issues, on top of XML, the Semantic Web grows as a common structured

data source. With the W3C standards Resource Description Framework (RDF) and

Web Ontology Language (OWL), the Semantic Web aims to unify the way semantic

information is stored and exchanged. The Semantic Web makes it possible for ma-

chines themselves to not just read, but also “understand” the data from data sources,

which enables machine to machine communication. In particular, languages such as

as Microformats11 and schema.org, can be used to add semantics to the descriptions

of Web resources (including things).

11http://www.microformats.org
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2.4.2 Web Search

The frequent changes and the unprecedented scale of the Web together pose enor-

mous challenges to Web search engines, making it challenging to provide the most

up-to-date and highly relevant information to their users. In IoT, this may become

even more challenging as things would scale up the Web further and make the Web

change more rapidly. For example, Tsubuyaku Sensor12 is a new wireless device from

Japanese Ubiquitous Computing Technology. It can monitor conditions such as tem-

perature, humidity and radiation levels. It then automatically tweets the resulting data

via Twitter. In this way, a sensor becomes a virtual Twitter user, which can actively

post tweets on the Web.

Real-time Web Search

Real-time web search refers to the retrieval of very latest content which is in high

demand. It is reported that Twitter handled more than 50 million tweets per day in

2010 [56]. Providing real-time search service is indeed very challenging in such large-

scale microblogging systems because thousands of new updates need to be processed

per second.

Twitter is real-time micro-blogging and the real-time interaction of events such

as earthquakes in Twitter is investigated in [46]. They consider each Twitter user as

a virtual sensor and apply Kalman filtering and particle filtering for estimating the

centers of earthquakes and the trajectories of typhoons. Similarly, two challenges not

encountered in non-real-time web search when supporting real-time web search have

also been identified by [47], which are (i) quickly crawling relevant content and (ii)

ranking documents with link and click information. Then they propose to use the

micro-blogging data stream to detect fresh URLs and to compute novel and effective

features for ranking fresh URLs based on micro-blogging data.

12http://ts.uctec.com/tsensor/index-e.php
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Searching information over RDF Data

Searching information from RDF data is important as more and more information is

published in the form of RDF (e.g., via Linked Open Data Cloud). Efficient manage-

ment of RDF data is also an important factor in realizing the Semantic Web vision.

Performance and scalability issues need to be addressed as the Semantic Web technol-

ogy is applied to real-world applications. Unlike the relational database community,

the Semantic Web community uses a very different data model, which is RDF.

MIDAS-RDF, a distributed P2P RDF/S repository that is built on top of a dis-

tributed multi-dimensional index structure, has been presented by [48]. It features

fast retrieval of RDF triples satisfying various pattern queries by translating them into

multi-dimensional range queries, which can be processed by the underlying index in

hops logarithmic to the number of peers.

Collaborative Web Search

Web search engines often answer user queries based on data and information in rele-

vant structured databases, which will be searched in isolation. Since a single database

may not contain sufficient information to answer the query, the search often produces

empty or incomplete results. Motivated by this observation, web search results and

the items in structured databases have been exploited together to produce more com-

plete answers to a wide range of queries that traditional web search cannot support

well [49]. Take the query “light-weight gaming laptop” as an example. Dell XPS

M1330 should be considered a match to such query as it is a light-weight laptop and

suitable for gaming. But if searching only for the query keywords {light-weight,

gaming} on the Web, Dell XPS M1330 may not appear in the search results. There-

fore, the web search results (e.g. a set of relevant web documents) can be utilized to

help identify relevant information in some structured databases [49]. Then the user

queries could be better answered.
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Similarly, web search engines have also been exploited to define new similarity

functions for recognizing named entities such as products, people names, or locations

from documents, such as “X61" and the entity “Lenovo ThinkPad X61 Notebook"

[50]. The proposed new similarity functions are more accurate than existing string-

based similarity functions because they aggregate evidence from multiple documents,

and exploit web search engines to measure similarity.

2.4.3 Search of Things in IoT

In IoT, connecting things enabled by RFID, embedded sensors and sensor networks

to the Internet and publishing their output on the Web would become a reality. Real-

world objects would have their own Web presence. Considering the potential and

profound impact of IoT technologies, search of things in IoT will become as important

as today’s document search on the Web.

Key Words based Search of Things

Unlike search engines such as Google, searching for information in the physical world

is more difficult because the physical objects do not have (reliable) connections to

virtual space. For example, online books can be easily discovered by searching but

physical books at home may be more difficult to find. This observation motivates

the design of Snoogle [51], a search engine for the physical world. The basic idea

behind Snoogle is that sensor nodes carry a textual description of the object they will

be attached to. Such description forms the keywords for search of things. Then the

key words information of the whole sensor network is indexed using a two-tiered

hierarchy. The lower tier contains many mediators, which are also called index points.

Each index point maintains an aggregate view of all sensors in a local area (e.g. a

room) and every sensor in the same area will be assigned to the same index point. In
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the top tier, there is a single mediator called the key index point. The key index point

will maintain an aggregate view of the whole network.

MAX, a system that users can easily locate objects, is also designed [52]. The

main assumption is that tags are attached to everyday objects and each tag stores a de-

scriptor of the object it is attached to (e.g., the book of Harry Potter). Multiple

descriptor words are allowed in each tag, enabling users to label the object with richer

information, so that others can locate the object based on the label. A three-tiered hier-

archy of mediators is used. In the lowest tier, substations represent immobile objects

such as tables or shelves, on which mobile tagged objects can be placed. In the middle

tier, base stations represent a geographical space such as a room containing multiple

substations. In the top tier, the MAX server represents the entire space covered by

the system. When searching for an object left behind, it is easy to locate where the

object has been left by exploiting the knowledge of which substation and base station

it belongs to.

Microsearch is a system that runs on resource constrained small devices capable

of being embedded into everyday objects [53]. It allows users to do textual search

in the local storage of a stand-alone small device, without support from a backend

server. The challenge is that Microsearch runs in a resource constrained platform,

where conventional search engine design and algorithms cannot be used. Information

retrieval (IR) techniques for query resolution can answer top-k queries in a space-

efficient manner [53].

Another search engine mainly designed for searching things, called Dyser, is pro-

posed by [54]. Dyser allows users to search for real-world entities with a given state,

such as “hot” or “cold”. However, this approach imposes two strong conditions: (i) to

perform a query, end users have to know the vocabulary used by sensors (how states

are named); and (ii) an entity must be represented by all the sensors that compose

it. In order to estimate the probability of a sensor matching a query with sufficient

accuracy and to rank sensor matching results, prediction models are adopted. The key
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idea of sensor ranking is to exploit the periodic nature of people-centric sensors by

using appropriate prediction models.

Collaborative Search of Things

A comprehensive system for managing and finding everyday objects relying on the

collaboration of mobile phones in an urban area as object-sensing devices has been

presented by [55]. For such tasks, the authors argue that the necessary infrastructures

for such system include a sensing infrastructure, a communication infrastructure and a

commercial infrastructure. Because of these requirements, the modern mobile phone

system, which contains mobile sensors, provides a unique opportunity to realize col-

laborative search of everyday objects. The sensing model of the proposed system

associates a probability with locations, meaning that the object currently has a certain

probability of being at a certain location, thereby accelerating the search speed and

reducing communication cost. Mobility provided by mobile sensors increases spatial

coverage and hence the probability of finding a sought object.

2.5 Complex Event Processing

Data streaming techniques typically process incoming data through a sequence of

transformations based on common SQL operators, such as selection, aggregate,

join, and these operators are defined in general by relational algebra. By contrast,

the complex event processing (CEP) model views the information in the streams as

events in the physical world. These events must be filtered, combined and transformed

into higher-level events for better understanding by computers and humans. Similar

to traditional publish-subscribe systems, CEP systems allow subscribers to express

their interest in composite events. The focus of the CEP model is on detecting occur-

rences of particular patterns of (low-level) events indicating some higher-level events,

which may be interesting to some particular event subscribers. In the era of IoT, CEP
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techniques lay part of the foundation of supporting computers to sense and react to

events in the physical world. In the following, we survey some major CEP techniques

related to IoT and summarize these techniques in Table 2.5.

2.5.1 Complex Event Processing

Systems for event processing and in particular event recognition (event pattern match-

ing) accept a stream of time-stamped, simple or low-level events as input. A low-

level event is the result of applying a computational derivation process to some other

event, such as an event coming from a sensor. Using low-level events as input, (com-

plex) event processing systems identify composite or high-level events of interest [57].

They are also collections of events that satisfy certain patterns.

SASE is a complex event processing system designed for monitoring queries over

streams of RFID readings [58]. The SASE defines its own declarative event lan-

guage that combines filtering, correlation, and transformation of events. The over-

all structure of the SASE language contains the EVENT clause specifying event pat-

terns, the WHERE clause specifying qualifications and the WITHIN clause specify-

ing window sizes. To meet the needs of RFID-enabled monitoring applications, sev-

eral operators are also defined, including the ANY operator, the SEQ_ operator, the

SEQ_WITHOUT operator, the Selection operator and the WITHIN_ operator. In

order to process SASE queries, a query plan in SASE adopts a subset of six oper-

ators: sequence scan, sequence construction, selection, window,

negation, and transformation. Pipelined execution of the above operators is

used. More specifically, if a query matches a current event and some previous events,

these events will be emitted from sequence scan and sequence construction immedi-

ately and form an event sequence. This event sequence is then pipelined through the

subsequence operators, and added to the final output. To realize sequence scan, the

basis of the whole process, Non-deterministic Finite Automata (NFA) are used.
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Pattern matching over streams has been studied by [59]. It presents two new chal-

lenges: (i) compared with languages for regular expression matching, languages for

pattern matching over streams are significantly richer; and (ii) the conventional tech-

niques for stream query processing are inadequate for efficient evaluation of pattern

queries over streams. In order to represent each pattern query, a new query evaluation

model is designed for processing pattern matching over RFID streams, employing a

new type of automaton that comprises a nondeterministic finite automaton (NFA) and

a match buffer, named NFAb [59]. Because of the powerful expressiveness of NFA,

the semantics for the complete set of event pattern queries can be captured by the

NFAb model. Optimizations and query evaluation plans can also be produced and

applied based on this model over event streams.

Nested CEP language called NEEL is proposed to support the flexible nesting of

AND, OR, Negation and SEQ operators at any level [60]. One NEEL query exam-

ple is given in Fig. 2.2, which expresses “a critical condition that after being recycled

and washed, a surgery tool is being put back into use without first being sharpened,

disinfected and then checked for quality assurance" [60]. Several techniques are also

proposed to accelerate the evaluation of nested queries. Firstly, nested event expres-

sions will be converted into normal forms by a normalization procedure. Secondly, a

group of similar sub-expressions will be processed using prefix caching, suffix clus-

tering methods and a customized physical execution strategy. Thirdly, an optimizer

for optimal shared execution method is also designed based on the idea of iterative

improvement. Compared with the traditional iterative nested execution, the optimized

NEEL execution is up to two orders of magnitude faster.

Recent efforts have also been put on other aspects of complex event processing.

For example, complex event processing in a distributed environment is studied and

FUGU, an elastic allocator for Complex Event Processing systems, is proposed [61].

FUGU can dynamically allocate and de-allocate both stateless and stateful queries in

order to meet the utilization goals. To that end, FUGU relies on bin packing to allo-
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Fig. 2.2 Nested CEP Query Example
(Adapted from the work by [60])

cate queries to hosts. Very recently, load shedding techniques have been investigated

for complex event processing under various resource constraints [62]. Like other

stream systems, CEP systems often face bursty input data. Since over-provisioning

the system to the point where it can handle any such burst may be uneconomical

or impossible, during peak loads a CEP system may need to “shed” portions of the

load. The key technical challenge is to selectively shed work in order to eliminate

the less important query results, thereby preserving the more useful query results de-

fined by some utility function. Motivated by this, several load shedding algorithms

are designed, including CPU-bound load shedding, memory-bound load shedding,

and dual-bound load shedding (with both CPU- and memory-bound), depending on

which resource is constrained.

2.5.2 Semantic Complex Event Processing

The combination of event processing and knowledge representation can lead to novel

semantic-rich event processing engines [63, 64]. These intelligent event processing

engines can (i) help to understand what is happening in terms of events, (ii) state and

know what reactions and processes it can invoke, and furthermore (iii) decide what

new events it can signal. The identification of critical events and situations requires

processing vast amounts of data and meta-data within and outside the systems.
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Fig. 2.3 Semantic Complex Event Processing System Overview
(Adapted from the work by [64])

Semantic CEP System

A semantic CEP system is shown in Fig. 2.3. Semantic models of events can improve

event processing quality by using event meta-data in combination with ontologies and

rules (i.e., knowledge bases). The fusion of background knowledge with data from

an event stream can help the event processing engine to know more about incoming

events and their relationships to other related concepts. A Knowledge Base (KB)

can be used to provide background knowledge about the events and other non-event

resources [64]. This means that events can be detected based on reasoning on their

type hierarchy, temporal/spatial relationships, or their relationship to other objects in

the application domain.

The benefits of using background knowledge in complex event processing can be

seen as two major advantages over state-of-the-art CEP systems. The first benefit is

its higher expressiveness and the second one is its flexibility. Expressiveness means

that an event processing system can precisely express complex event patterns and re-

actions to events which can be directly translated into business operations. Flexibility

means that a CEP system is able to integrate new business changes into the systems

in a fraction of time rather than changing the whole event processing rules. Com-



2.5 Complex Event Processing 41

Table 2.5 Comparisons of CEP Techniques.

Approach Vel Sca Dyn Het Unc Red Amb Incs Incp Sem

SASE [20]
√ √

RFID-Streams-Pattern-
Matching [21]

√ √ √

NEEL [22]
√ √ √

FUGU [23]
√ √

Resource-Constrained-
CEP [24, 25]

√ √ √ √

KB-Fusion [64]
√ √

Semantic-Event-
Enrichment [65]

√ √

Approximate-Semantic-
Matching [63]

√ √

Heterogeneous-
Approximate-Semantic-
Matching [66]

√ √ √

Note: Key elements that have been considered.

Vel: Velocity Sca: Scalability Dyn: Dynamics Het: Heterogene-
ity

Unc: Uncer-
tainty

Red: Redundancy Amb: Ambiguity Incs: Inconsis-
tency

Incp: Incompleteness Sem: Semantics

plex event patterns are independent of current businesses and are defined in a higher

level of abstraction based on business strategies. When something is changed in the

business environment, it can be considered simply as an update in the background

knowledge and the complex event detection patterns which are defined based on the

business plans should not be changed.

Semantic Event Enrichment

The usage of background knowledge about events and their relations to other concepts

in the application domain can improve the expressiveness and flexibility of CEP sys-

tems. Huge amounts of domain background knowledge stored in external knowledge

bases can be used in combination with event processing in order to achieve more

knowledgeable complex event processing.
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An information completeness problem in semantic event processing contexts has

been identified by [65] from a different angle. For example, while the basic informa-

tion item in an event-based system is an event, normal users often require the system

to handle information that is not encoded in the event. Such information typically

comes from legacy databases or web data sources. This requires some degrees of in-

formation completeness or incompleteness for events to be sufficient for tasks such as

subscription matching. The process of reducing information incompleteness is called

event enrichment. Several challenges are identified for event enrichment, including

determination of the enrichment source, retrieval of information items from the en-

richment source, finding complementary information for an event in the enrichment

source and fusion of complementary information with the event. To address these

challenges, a model based on unifying enrichment within the event consumer logic

and a native enricher that tackles incompleteness before matching are proposed [65].

Approximate Semantic Matching

Approximate semantic matching is first studied by [63]. To achieve approximate

matching, semantic selection and inexact selection are used. More specifically, the

semantic selection evaluates pattern constraints based on the semantic equivalence

of attribute meanings captured by the event ontology instead of syntactic identical

attribute values, while the inexact selection selects events and allows a limited number

of mismatches to detect relevant patterns. A similarity function is associated with the

inexact selection to evaluate relevance between matching patterns and target patterns.

Approximate semantic matching of heterogeneous events is also studied by [66].

The motivation is that heterogeneous events are difficult to match in a distributed

computing environment as similar or closely related events may not be described

using the same words but in a semantically related form. To match all interesting

events, users may have to write many slightly different subscriptions and have to know
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the exact format of all the heterogeneous events. Based on such observation, semantic

decoupling of events and user’s subscriptions becomes necessary. However, after such

decoupling, the subscriptions would hardly exactly match the descriptions of events.

This indicates that approximate matching and processing of events are inevitable. A

model for approximate semantic matching that addresses event semantic decoupling

is proposed. The model is evaluated using a hybrid matching approach based on both

thesauri, semantic similarity and relatedness measures. After adopting this technique,

the number of event subscriptions to achieve sufficiently precise matching results can

be greatly reduced because of the decoupling between events and user subscriptions.

2.6 Summary

It is predicted that the next generation of the Internet will be comprised of trillions of

connected computing nodes at a global scale. Through these nodes, everyday objects

in the world can be identified, connected to the Internet and take decisions indepen-

dently. In this context, Internet of Things (IoT) is considered a new revolution of the

Internet. In IoT, the possibility of seamlessly merging the real and the virtual worlds,

through the massive deployment of embedded devices, opens up many new and excit-

ing directions for both research and development. In this chapter, we have provided

an overview of some key research areas of IoT, specifically from a data-centric per-

spective. We have identified an IoT data taxonomy with ten key data elements of IoT

data under three categories, including data generation, data quality, and data inter-

operability. We have also covered detailed discussions on data models, data storage,

stream processing, search and event processing.

This chapter provides general background and context for the research in this

thesis. For the specific research problems this thesis tries to solve, we will have

additional related work and motivations presented in each technical chapter, including

Chapter 3, Chapter 4, Chapter 5, and Chapter 6.
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In the next chapter (Chapter 3), we will focus on addressing one of the key data

elements, data dynamics, in IoT. More specifically, we will study data dynamics in

dynamic graphs, by modeling relationships/connections between things with graphs.



Chapter 3

Shortest Path Computation in

Dynamic Graphs

In IoT, connections between things are expected to be intermittent due to short battery

life and mobility. In addition, things are normally small and fragile. So it is natural

to model relationships/connections between things using dynamic graphs. In this

chapter, we focus on the problem of computing the shortest path distance in graphs

subject to edge failures. We propose SIEF, a Supplemental Index for Edge Failures in

a graph, which is based on distance labeling. Together with the original index created

for the original graph, SIEF can support distance queries with edge failures efficiently.

By exploiting properties of distance labeling in static graphs, we are able to compute

very compact distance labeling for dynamic graphs with edge failures. We extensively

evaluate our algorithms using six real-world graphs and confirm the effectiveness and

efficiency of our approach. The research presented in this chapter was published in

[67].
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3.1 Overview

Recent years have witnessed the fast emergence of massive graph data in many appli-

cation domains, such as the World Wide Web, Linked Data technology, online social

networks, and Web of Things [68–71]. In a graph, one of the most fundamental chal-

lenges centers on the efficient computation of the shortest path or distance between

any given pair of vertices. For instance, distances or the number of links between web

pages in a web graph can be considered a robust measure of web page relevancy, es-

pecially in relevance feedback analysis in web search [68]. In RDF graphs of Linked

Data, the shortest path distance from one entity to another is important for ranking

entity relationships and keyword querying [69, 72]. For online social networks, the

shortest path distance can be used to measure the closeness centrality between users

[70].

Shortest path and distance computation plays an important role in smart city com-

puting. Urbanization’s rapid progress has led to many big and intelligent cities, which

have brought better lives to inhabitants in cities. However, many new challenges have

also emerged, such as urban planning, transportation, and control of traffic congestion

[73]. Take traffic control as an example, ridesharing is a promising way to save en-

ergy consumption and reduce traffic congestion without overlooking people’s needs

in commute. Specially, taxi ridesharing is considered a potential approach to alleviate

taxi service waiting time and traffic congestion during the rush hours. To realize effi-

cient and effective taxi ridesharing, shortest path computation in road networks is one

of the key techniques [74]. Moreover, the analysis of a city’s road network can help

better formulate city planning for the future [75, 73], which also requires intensive

shortest path and distance computation.

Because of the importance of shortest path and distance computation, a large body

of indexing techniques have been recently proposed to process exact shortest path

distance queries in a variety of graphs [76–82]. Among them, a significant portion
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of indexes are based on 2-hop distance labeling, originally proposed by Cohen et al.

[83]. The 2-hop distance labeling techniques pre-compute a label for each vertex so

that the shortest path distance between any two vertices can be computed given only

their labels. These labeling indexes, such as [76, 79, 80, 82], have been proved to be

efficient, i.e., being able to answer a distance query within microseconds.

Motivation. The above mentioned approaches generally make the assumption that

graphs are static. However, in reality, many graphs are subject to edge failures. In

this chapter, we refer to graphs that are not subject to edge failures as stable graphs,

i.e., static graphs. Similarly, we refer to graphs that are subject to edge failures as un-

stable graphs. For example, the emerging social Web of Things calls for graph data

management with edge failures because smart things are normally moving and their

connectivity could be intermittent, leading to frequent and unpredictable changes in

the corresponding graph models [84, 71]. Also, road networks in a city may have

failed road segments due to traffic congestions or road works. Another example is

web graphs. It is not uncommon that some web links become invalid as the web

evolves. All these are examples of unstable graphs, which are common in the real-

world, calling for efficient graph computations by considering link failures. We be-

lieve that it is imperative to design novel algorithms that can compute shortest path

indexes for fast response on distance queries avoiding any failed edges. Some real-

world applications/scenarios that require the computation of shortest path distance

avoiding a failed edge are described in the following.

Scenario 1 In the sensitivity analysis and in many analytical applications of trans-

portation networks, government agencies need to evaluate different road segments

(i.e., to find how much a road segment is worth) through Vickrey pricing [85], such

that maintenance budget can be allocated accordingly, or the amount of tolls can be

adjusted reasonably [75]. For example, if tolls are not charged appropriately and

avoiding an expensive toll point causes only a small detour, then it is more likely that
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most drivers would take the detour, rather than pay for the toll. In a smart city, such

scenarios may appear in road network planning for setting up toll road segments.

Scenario 2 The most vital arc problem [86, 87] aims to identify the edge on a given

shortest path and the removal of this edge results in the longest replacement path.

Here, a replacement path means a shortest path from a source vertex to a destination

vertex in a graph that avoids a specified edge. To find the most vital arc in a graph, we

need to compute the shortest path distances efficiently when we are given an arc (i.e.,

an edge) to avoid. In smart city computing, the most vital arc computation could be

critical and fundamental when recommending alternative shortest paths to travelers

in the city road networks.

Scenario 3 In order to develop game-theoretic and price-based mechanisms to

share bandwidth and other network resources, a natural economic question is [85]:

how much is an edge in a network worth to a user who wants to send data between

two nodes along a shortest path? Or in other words, what is the penalty of avoid-

ing an edge in the given network? In the future smart cities, Web of Things could

bring fundamental changes to city development and city intelligence. To enhance

data availability and data sharing efficiency among different things in a smart city,

we need to efficiently estimate the penalty of avoiding data transmission between two

things and try to optimize data transmission paths according to the analytical results

of the penalties.

These application scenarios reveal a desire for handling shortest path computa-

tions in a graph with single-edge failure and in smart city computing. Here, single-

edge failure refers to graph failures with only one failed edge at a time [88]. Note

that, other types of edge failure, such as dual-failure in [89], may allow multiple failed

edges at a time. But they are considered much harder than single-failure [89]. To shed

light on these challenging issues, we focus on exact distance queries answering for
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single-edge failure first. We then discuss how to apply our approach to approximately

answer distance queries for other types of edge failures.

Contributions. Since 2-hop labeling has shown its power to support instant responses

to shortest path distance queries in stable graphs, our work aims at extending this tech-

nique to support unstable graphs. Existing shortest path indexing techniques based on

2-hop labeling can be used to pre-compute the whole shortest path index for a graph.

The resulted indexes can normally answer distance queries fast using moderate stor-

age space [80, 82]. However, applying indexing techniques designed for static/stable

graphs directly to evolving/unstable graphs may lead to inefficiency. When consid-

ering every single-edge failure case and constructing a corresponding index for each

case, the size of all these indexes will become too big to manage. For instance, a

snapshot of the Gnutella peer-to-peer (P2P) file sharing network in August 2002 con-

tains more than 6,000 vertices1 and 20,000 edges. Using the state-of-the-art method,

Pruned Landmark Labeling (PLL) [80], the index size is slightly more than 5 MB.

However, suppose we want to construct such index for each single-edge failure case,

the total index size would be more than 5 MB ×20,000 = 105 MB.

To address the deficiency of existing shortest path indexing techniques, in this

chapter we propose a generic framework named SIEF, a Supplemental Index for Edge

Failures in a graph, to construct compact shortest path indexes efficiently for unstable

graphs where single-edge failure may exist. As an initial attempt on this challenging

issue, we focus on unweighted, undirected graphs. Similar to other distance labeling

based indexing methods [80, 82], our method can be extended to weighted and/or

directed graphs. We highlight our main contributions in the following.

• We present the concept of well-ordering 2-hop distance labeling and identify

its important properties that can be utilized to design algorithms for shortest

path indexes in graphs with edge failures.

1http://snap.stanford.edu/
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• We analyze shortest path index constructions in graphs with edge failures theo-

retically. We develop the corresponding theorems as well as novel algorithms to

enable constructions of compact indexes for all the single-edge failure cases of

the entire graph. By applying our approach to the aforementioned Gnutella P2P

dataset, the size of the generated SIEF index together with the original index

created for the original graph is merely 14 MB, which is much more compact

than 105 MB by directly using PLL method [80] to construct indexes for each

single-edge failure case.

• We apply the SIEF framework to multi-edge failure cases and design two query-

ing strategies, namely aggressive strategy and conservative strategy, to approx-

imately answer distance queries with multi-edge failure constraints.

• We conduct extensive experiments using six real-world graphs to verify the

efficiency and effectiveness of our method. The results show that our method

can efficiently answer shortest path distance queries avoiding a failed edge with

very compact labeling indexes.

A preliminary version of this chapter appeared in [67], where we focused on the

introduction of the SIEF framework for answering distance queries in failure-prone

graphs with only single-edge failure. In this chapter, we further extend our work to

multi-edge failure. For this purpose, aggressive strategy and conservative strategy

have been proposed to provide approximate answers to distance queries with multi-

edge failure constraints. More extensive experiments have also been done to validate

the accuracy and fast response time of answering distance queries in multi-edge fail-

ure graphs using SIEF.

The rest of this chapter is organized as follows. In Section 3.2, we review the

related work. In Section 3.3, we present some preliminaries on 2-hop distance label-

ing. We then present the SIEF framework and the details of our approach in Section

3.4. We also discussion some variants and extensions of SIEF in the same section. In
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Section 3.5, we report the results of an extensive experimental study using six graphs

from real-world. Finally, we present some concluding remarks in Section 3.6.

3.2 Related Work

In this section, we review the major techniques that are most closely related to our

work, mainly including distance labeling for static graphs, 2-hop reachability labeling

in dynamic graphs, and maintenance of 2-hop distance labeling in dynamic graphs.

Distance labeling has been an active research area in recent years. In [76], Cheng

and Yu exploit the strongly connected components property and graph partitioning

to pre-compute 2-hop distance cover. However, the graph partitioning process intro-

duces high cost because it has to find vertex separators recursively. Hierarchical hub

labeling (HHL) proposed by Abraham et al. [90] is based on the partial order of ver-

tices. Smaller labeling results can be obtained by computing labeling for different

partial order of vertices. In [91], Jin et al. propose a highway-centric labeling (HCL)

that uses a spanning tree as a highway. Based on the highway, a 2-hop labeling is

generated for fast distance computation.

Very recently, the pruned landmark labeling (PLL) [80] is proposed by Akiba

et al. to pre-compute 2-hop distance labels for vertices by performing a breadth-

first search from every vertex. The key idea is to prune vertices that have obtained

correct distance information during breadth-first searches, which helps reduce the

search space and sizes of labels significantly. Further, query performance is also

improved as the number of label entries per vertex is reduced. IS-Label (or ISL) is

developed by Fu et al. in [82] to pre-compute 2-hop distance label for large graphs

in memory constrained environments. ISL is based on the idea of independent set of

vertices in a large graph. By recursively removing an independent set of vertices from

the original graph, and by augmenting edges that preserve distance information after

the removal of vertices in the independent set, the remaining graph keeps the distance
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information for all remaining vertices in the graph. Apart from the 2-hop distance

labeling technique, a multi-hop distance labeling approach [79] is also studied, which

can reduce the overall size of labels at the cost of increased distance querying time.

The Tree decomposition approach has been recently investigated [77, 92] for an-

swering distance queries in graphs. Wei proposes TEDI [77], which first decomposes

a graph into a tree and then constructs a tree decomposition for the graph. A tree

decomposition of a graph is a tree with each vertex associated with a set of vertices in

the graph, which is also called a bag. The shortest paths among vertices in the same

bag are pre-computed and stored in bags. For any given source and target vertices,

a bottom-up operation along the tree can be executed to find the shortest path. An

improved TEDI index is proposed by Akiba et al. in [92] that exploits a core-fringe

structure to improve index performance. However, due to the large size of some bags

in the decomposed tree, the construction time for a large graph is costly and thus such

indexing approaches cannot scale well.

The above studies focus on point to point shortest path distance processing. Some

studies also investigate other types of distance queries, such as single-source shortest

path (SSSP) distance queries. For example, Cheng et al. propose VC-index [78],

a disk-based method for processing SSSP distance queries based on the concept of

vertex cover. Highways-on-Disk (HoD) is also proposed in [81] to support SSSP

distance queries for directed graphs. HoD reduces I/O and computation costs for

query processing by augmenting a set of auxiliary edges or shortcuts in the original

graphs.

The maintenance of 2-hop reachability labeling has also been studied. For exam-

ple, HOPI (2-HOP-cover-based Index) introduces some maintenance techniques for

the constructed index. HOPI is developed by Schenkel et al. in [93] and is designed

to speed up connection or reachability tests in XML documents based on the idea of

2-hop cover. HOPI is able to update indexes for insertions and deletions of nodes,

edges or even XML documents. To the best of our knowledge, HOPI is the first work
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on the maintenance of 2-hop labeling. Recently, maintenance of 2-hop labeling for

large graphs has also been studied by Bramandia et al. in [94]. However, all these

studies focus on reachability queries and are based on 2-hop labeling but not on 2-hop

distance labeling.

Incremental maintenance of 2-hop distance labeling is also studied very recently

by Akiba et al. in [95]. In that work, incremental updates (i.e., edge insertions) of

2-hop labeling indexes are investigated. To support fast incremental updates, out-

dated distance labels are kept, which will not affect the distance computation in the

updated graphs in the incremental case. However, for the decremental case (i.e., edge

deletions), this approach will not work, as outdated distance labels must be removed

first and then some necessary labels of the 2-hop labeling index need to be recom-

puted. Hence, their update algorithms cannot be applied on edge deletions (i.e., edge

failures), which will be discussed in this chapter.

3.3 Preliminaries

3.3.1 2-Hop Distance Labeling

The technique of 2-hop cover can be used to solve reachability problems (using reach-

ability labels) and shortest path distance querying problems (using distance labels) in

graphs [83]. Since our work focuses on the shortest path distance querying problems,

we adopt distance labels with the 2-hop cover technique. We specifically refer to it as

2-hop distance labeling or 2-hop distance cover.

Assume a graph G = (V,E), where V is a set of vertices and E is a set of edges.

For each vertex v ∈V , there is a pre-computed label L(v), which is a set of vertex and

distance pairs (u,δuv). Here u is a vertex and δuv is the shortest path distance between

u and v. Given such a labeling for all vertices in G, denoted by L, for any pair of

vertices s and t in G, we have
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dist(s, t,L) =min{δvs +δvt |(v,δvs) ∈ L(s)

and (v,δvt) ∈ L(t)}
(3.1)

If L(s) and L(t) do not share any vertices, we have dist(s, t,L) = ∞. The distance

between any given vertices s and t in G is denoted by dG(s, t). If we have dG(s, t) =

dist(s, t,L) for all s and t in G, we call the labeling result L a 2-hop distance cover.

3.3.2 Well-Ordering 2-Hop Distance Labeling

For a connected graph G, there exists a sequence of vertices σ =< v0,v1,v2, . . . ,vn−1 >.

We denote the order of any vertex vi as σ [vi] and we have σ [vi] = i for the above given

vertex sequence. Based on this, we can define Well-Ordering 2-Hop Distance Label-

ing in the following.

Definition 1 (Well-Ordering 2-Hop Distance Labeling). Suppose that (1) each vertex

vi has a distance labeling L(vi), and the labeling result L of all vertices forms a 2-hop

distance cover of G; (2) for any pair of vertices vi and v j, given that σ [vi] < σ [v j],

then v j is not in L(vi) and vi may be in L(v j). We call such a 2-hop distance cover

a well-ordering 2-hop distance labeling. Alternatively we say that a 2-hop distance

cover has well-ordering property.

Similar concepts of well-ordering 2-hop distance labeling also appear in recent

research efforts such as HHL [90], PLL [80], and ISL [82]. This confirms that well-

ordering 2-hop distance labeling is important in the related research area. More im-

portantly, we will show in this chapter that the well-ordering property is also a basic

concept in the design of index construction algorithms for distance labeling computa-

tion in unstable graphs where edges may fail.

In a graph containing multiple connected components, suppose its 2-hop labeling

is L. For any pair of vertices u and v in different connected components, we can
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Fig. 3.1 A graph example

Table 3.1 2-Hop Distance Labeling L for Figure 3.1

Label Entries

L(0) (0,0)
L(1) (0,1) (1,0)
L(2) (0,1) (2,0)
L(3) (0,1) (2,1) (3,0)
L(4) (0,1) (1,1) (4,0)
L(5) (0,2) (1,1) (2,1) (5,0)
L(6) (0,2) (2,2) (3,1) (4,2) (6,0)
L(7) (0,2) (2,2) (3,1) (6,1) (7,0)
L(8) (0,1) (4,1) (6,1) (8,0)
L(9) (0,3) (2,3) (3,2) (4,3) (6,1) (9,0)

L(10) (0,4) (2,4) (3,3) (4,4) (6,2) (9,1) (10,0)

assert that L(u) and L(v) do not share any vertex according to the definition of 2-hop

cover. Each connected component has its own vertex order. For such a graph, we will

have separate vertex orders for each connected component. We denote a connected

component containing vertex u as C(u). If u and v belong to the same connected

component, we have C(u) =C(v).

Figure 3.1 shows an example graph with 11 vertices and Table 3.1 shows a well-

ordering 2-hop distance labeling result L for the graph (L can be constructed by PLL

[80] using the same vertex ordering as that specified in the table). In the table, the

order of vertices is < 0,1,2,3,4,5,6,7,8,9,10>. Take L(5) as an example to further

explain the idea of well-ordering 2-hop distance labeling. L(5) is the label of ver-

tex 5. By the well-ordering property, label entries in L(5) can only contain vertices
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0,1,2,3,4 and 5. Since label entries containing vertices 3 and 4 are redundant in L(5)

(this will be explained in more details later in this section), label entries in L(5) only

contain vertices 0,1,2 and 5.

3.3.3 Properties of Well-Ordering 2-Hop Distance Labeling

Technically speaking, if we index shortest paths for all pairs using a labeling method,

we will obtain an index that occupies O(n2) disk space. This index can be consid-

ered as a special 2-hop distance labeling. Obviously, the space complexity of this is

too high for large graphs. Constructing a minimal 2-hop distance labeling has been

proven to be NP-hard [83]. Therefore, an alternative way to obtain labeling results

with reduced sizes is by using heuristic methods [76, 79, 80, 82]. Well-ordering 2-hop

distance labeling is one of the techniques that can help to design efficient algorithms

for constructing shortest path distance labeling indexes and for index maintenance.

We identify its useful properties in the following.

Lemma 1 Given a well-ordering 2-hop distance labeling L of a connected graph G,

suppose u ∈ G and σ [u] is a minimum among all vertices in G, then for any vertex

v ∈ G, we must have (u,δuv) ∈ L(v).

Proof: It is trivial to prove this when v = u since (u,0) ∈ L(u). We prove the case

when v 6= u by contradiction. Suppose there exists a vertex v ∈ G, (u,δuv) /∈ L(v).

By the definition of L, since σ [u] is minimum, L(u) will contain only one label entry

(u,0). Then it is obvious that L(u) and L(v) do not share any vertex, which leads to

dist(u,v,L) = ∞. This implies that u and v belong to different connected components,

which is false. Therefore, the lemma is proved. �

Lemma 2 Given a well-ordering 2-hop distance labeling L of a connected graph G,

suppose s, t,u ∈ G and dist(s, t,L) = dist(s,u,L)+ dist(u, t,L), then u must be an

internal vertex of a certain shortest path between s and t.
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Proof: Since dist(s, t,L) = dist(s,u,L)+dist(u, t,

L), there must exist some shortest path that starts from s, passes u, and ends at t.

Hence the lemma is proved. �

Take vertices 5, 6 and 2 in Figure 3.1 as an example. From Table 3.1, we have

dist(5,6,L)=3 and dist(5,2,L)+dist(2,6,L) = 1+2 = 3. From Figure 3.1, we can

see that vertex 2 is an internal vertex on some shortest path, denoted as p, between

vertex 5 and vertex 6. In this case, we have p =< 5,2,3,6 >.

Lemma 3 Given a well-ordering 2-hop distance labeling L of a connected graph

G, suppose s, t,u ∈ G and u has minimum vertex order σ [u] among all shortest

paths between s and t. Then we must have (u,δus) ∈ L(s) and (u,δut) ∈ L(t) and

dist(s, t,L) = δus +δut .

Proof: We prove this by contradiction. Without loss of generality, suppose (u,δus) /∈

L(s). In order to calculate dist(s,u,L), there must exist some vertex v other than u,

where (v,δvs)∈ L(s), (v,δvu)∈ L(u) and dist(s,u,L)= δvs+δvu. According to Lemma

2, v must be an internal vertex of some shortest path between s and u. Hence v must

also be an internal vertex of some shortest path between s and t. Meanwhile, by

definition, we must have σ [v]< σ [u]. This contradicts our assumption that u has the

minimum vertex order among all shortest paths between s and t. Hence, we must have

(u,δus) ∈ L(s). Furthermore, u is an internal vertex of some shortest path between s

and t, thus dist(s, t,L) = δus +δut . Hence the lemma is proved. �

Take vertices 1 and 6 in Figure 3.1 as an example. Paths p1 =< 1,0,8,6>, p2 =<

1,0,3,6 > and p3 =< 1,4,8,6 > are all the shortest paths between vertices 1 and 6.

Vertex 0 is the one with minimum order along all these paths. From Table 3.1 we can

see that both vertices 1 and 6 contain a label entry (0,δ ). We can also easily check

that dist(1,6,L) = δ0,1 +δ0,6 = 1+2 = 3.
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Lemma 4 Given a well-ordering 2-hop distance labeling L of a connected graph

G, suppose σ [u] < σ [v]. If there is a label entry (u,δuv) ∈ L(v), we must have for

any label entry (r,δrv) ∈ L(v), (1) δuv ≤ δrv + dist(r,u,L); (2) if σ [r] < σ [u] and

δuv = δrv +dist(r,u,L) then (u,δuv) ∈ L(v) is a redundant label entry.

Proof: We first prove the first claim that δuv ≤ δrv +dist(r,u,L). By definition and

the triangle inequalities we must have δuv = dG(u,v)= dist(u,v,L)≤ δrv+dist(r,u,L).

We then prove the second claim. We need to prove that if δuv = δrv +dist(r,u,L),

then for any vertex t, when we calculate dist(v, t,L), (u,δuv) in L(v) is not required.

For t, there are three cases: (1) (u,δut) /∈ L(t); (2) (u,δut) ∈ L(t) but δuv + δut >

dist(v, t,L); (3) (u,δut) ∈ L(t) and δuv +δut = dist(v, t,L). For Case (1) and Case (2),

it is trivial since (u,δuv) in L(v) is not required to calculate dist(v, t,L). For Case

(3), according to Lemma 2, u is an internal vertex of some shortest paths between v

and t. Similarly, since δuv = δrv+dist(r,u,L), r is an internal vertex of some shortest

paths between u and v, which means r is also an internal vertex of some shortest paths

between v and t. In such case, we prove in the following that there must exist a vertex

s other than u and we have (s,δsv) ∈ L(v), (s,δst) ∈ L(t) where δst +δsv = dist(v, t,L).

Suppose s is the vertex with minimum vertex order among all shortest paths be-

tween v and t. According to Lemma 3, we must have (s,δsv) ∈ L(v), (s,δst) ∈ L(t)

and δst + δsv = dist(v, t,L). Since σ [s] ≤ σ [r] < σ [u], s is not the same vertex of u.

Therefore, (u,δuv) in L(v) is not required to calculate dist(v, t,L). Hence, the second

claim is also proved. �

Take label entries of vertex 5 in Table 3.1 as an example. We have σ(3) < σ(5)

and σ(2)< σ(3). We also have δ3,5 = 2 = δ2,5+δ2,3. Therefore (3,2) is a redundant

label entry in L(5), which can be removed from L(5).
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3.4 The SIEF Approach

In this section, we first provide an overview of our SIEF approach. We then analyze

the 2-hop distance labeling computation in graphs with single-edge failure and intro-

duce a set of algorithms to achieve fast and compact index constructions. Finally, new

querying strategies are also designed to provide approximate distance estimation in

multi-edge failure graphs.

3.4.1 SIEF Overview

After an edge fails in a graph, we observe that distances of a large proportion of

shortest paths between any pair of vertices remain unchanged. Therefore, to construct

a new index for each single-edge failure case, we only need to compute new labels for

those vertices with changed shortest path distances due to the edge failure. Overall,

our index construction approach can be divided into two main stages. In the first

stage, IDENTIFY, we identify affected vertices after an edge fails. In the second stage,

RELABEL, we relabel all affected vertices with necessary additional label entries for

the single-edge failed graph. These new label entries form a new part of the index,

which is called a supplemental index.

Before the detailed discussions of our algorithms, suppose that the failed edge is

(u,v) in G, and the new graph is G′, we introduce a concept for the supplemental

index construction:

Definition 2 (Affected vertices AV(u,v)). For any vertices s and t, if dG′(s, t) 6= dG(s, t),

then s ∈ AV(u,v) and t ∈ AV(u,v).

To be specific, AV(u,v) contains all vertices whose distance to some other vertex

must have been changed due to the failed edge (u,v). It is quite clear that supplemen-

tal indexes should be constructed to maintain all new distances for each single-edge

failure case. In other words, supplemental indexes are constructed based on all the
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vertices in AV(u,v). Further, in order to be compact, the supplemental indexes should

only answer distances that cannot be answered by the original index.

3.4.2 Identification of Affected Vertices

Before we can start to construct supplemental indexes, we need to identify all the

affected vertices in AV(u,v) first. A naive method would be to compare distances for

any possible pair of affected vertices in the original graph G and the new graph G′

with a failed edge (u,v), but that would be very time consuming as it will need to test

distances of O(n2) pairs of vertices. In the following, we will try to identify some

important properties for vertices in AV(u,v) for us to identify AV(u,v) more efficiently

and accurately.

Lemma 5 After removing the failed edge (u,v) from graph G, for any vertex s, t in

G′, we must have dG′(s, t)≥ dist(s, t, L).

Proof: In the old graph G, there are only two types of shortest paths: (1) shortest

paths containing edge (u,v); and (2) shortest paths not containing edge (u,v). For the

former, we have dG′(s, t)≥ dG(s, t) = dist(s, t,L). For the latter, we have dG′(s, t) =

dG(s, t) = dist(s, t,L). Thus the lemma is proved. �

Lemma 6 After removing the failed edge (u,v) from graph G, for any vertex s, t in G′,

if dG′(s, t)> dist(s, t,L), and suppose a shortest path between s and t in G is πG(s, t),

then we must have uv ∈ πG(s, t) or vu ∈ πG(s, t).

Proof: This can be proved by contradiction. Suppose we have dG′(s, t)> dist(s, t,L)

but uv /∈ πG(s, t) and vu /∈ πG(s, t), which means edge (u,v) does not appear in πG(s, t).

In such case, there must exist a path PG′(s, t) in G′ where πG(s, t) = PG′(s, t). This

means dG′(s, t) must be at most the length of PG′(s, t), i.e., the length of πG(s, t).
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Thus, we must have dG′(s, t) = dist(s, t,L′) ≤ dG(s, t). This contradicts our assump-

tion dG′(s, t)> dist(s, t,L). �

According to Lemma 6 and the definition of affected vertices, if we have dG′(s, t)>

dist(s, t,L)= dG(s, t), we must have that s, t ∈ AV(u,v). This further means the shortest

path(s) between s and t in the original graph G must contain the failed edge (u,v).

Then, after edge (u,v) fails, take any one of these shortest paths (if multiple shortest

paths exist; if not, we will have one and only one shortest path containing (u,v)) as

an example, denoted as πG(s, t). Then it is easy to imagine that πG(s, t) will become

two segments: one segment ends at u, denoted as Segu and the other segment ends at

v, denoted as Segv. Without loss of generality, suppose s falls on the Segu and t falls

on Segv. Since Segu and Segv must also be shortest paths from s to u and from t to

v, respectively, this means we must have dG(s,u) = d′G(s,u) and dG(t,v) = d′G(t,v).

But in the meantime, we must have dG(s,v) 6= d′G(s,v) and dG(t,u) 6= d′G(t,u) since

otherwise we will have dG′(s, t) = dG(s, t), which is impossible. Based on this obser-

vation, we can see that vertices in AV(u,v) form two disjoint sets: one set is AV(u,v)(u)

and the other set is AV(u,v)(v), where for ∀s ∈ AV(u,v)(u) and ∀t ∈ AV(u,v)(v), we must

have dG′(s, t) > dG(s, t), dG(s,u) = d′G(s,u) and dG(t,v) = d′G(t,v). Since (u,v) is

the failed edge, obviously, we must have u ∈ AV(u,v)(u) or v ∈ AV(u,v)(v). Further, it

should be noted that, ∀s, t ∈ AV(u,v)(u), we must have dG(s, t) = d′G(s, t). The same

conclusion can be made on ∀s, t ∈ AV(u,v)(v).

Next, we are going to show that all vertices s ∈ AV(u,v)(u) form a tree rooted at u

and similarly, all vertices t ∈ AV(u,v)(v) also form a tree rooted at v.

Lemma 7 After removing the failed edge (u,v), for any vertex w in G′, suppose w is

an affected vertex, i.e. w ∈ AV(u,v)(u) or w ∈ AV(u,v)(v). Without loss of generality, we

assume w ∈ AV(u,v)(u). Then we must have dG(w,v) = dG(w,u)+1.

Proof: Since w ∈ AV(u,v)(u), we must have that dG(w,v) 6= d′G(w,v), which means

that any shortest path between w and v in G, denoted as pwv must contain the failed
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edge (u,v), which must also be a shortest path between w and v. Hence, there must

exist a certain shortest path between w and v containing edge (u,v) in the original

graph and we can denote it as pwv = pwu +(u,v). Hence, we must have dG(w,v) =

dG(w,u)+1. �

Lemma 8 After removing the failed edge (u,v), suppose w in G′ is an affected vertex,

i.e. w ∈ AV(u,v)(u) or w ∈ AV(u,v)(v). Without loss of generality, we assume w ∈

AV(u,v) (u). Then there must exist a certain shortest path between w and v containing

edge (u,v) in the original graph, where each internal vertex is an affected vertex in

AV(u,v)(u).

Proof: Since w ∈ AV(u,v)(u), then according to Lemma 7, we must have the fact that

any shortest path between w and u, denoted as pwu, plus edge (u,v) in the original

graph must be a shortest path between w and v. Then, there must exist a certain

shortest path between w and v containing edge (u,v) in the original graph and we can

denote it as pwv = pwu +(u,v).

It is clear that the internal vertices of pwv must also be on some shortest path

pwu. And all shortest paths from these internal vertices to vertex v must contain edge

(u,v), which means, their distances to vertex v must have changed in the new graph

G′. Therefore, they must also be affected vertices in AV(u,v)(u) like w. �

Note that, according to Lemma 8, AV(u,v)(u) and AV(u,v) (v) can be considered as

trees rooted at u and v, respectively. Moreover, we must have AV(u,v)(u)
⋂

AV(u,v)(v) =

/0. This is because otherwise, any vertex r in AV(u,v)(u)
⋂

AV(u,v)(v)must have dG(r,v)=

dG(r,u)+1 and dG(r,u) = dG(r,v)+1, which is impossible. Lemma 8 forms the ba-

sis of Algorithm 1. Note that, in Algorithm 1, we need to calculate distance vectors

du,dv,d
′
u and d′v for each single-edge failure case. Here, du stores distances from all

vertices in G to vertex u while d′u stores distances from all vertices in G′ to vertex u.

Distance vectors dv and d′v are similar. The calculations can be done efficiently using

a BFS algorithm. To reduce the calculation cost, we will fix an end point of failed
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Algorithm 1 Identify affected vertices

Input: G, (u,v), distance vectors du,dv,d
′
u,d
′
v

Output: AV(u,v)(u), AV(u,v)(v)
1. Initialize flag m[t]← 0 for any vertex t in G

2. m[u]← 1
3. Q← /0
4. Enqueue u into Q

5. while Q is not empty do

6. Dequeue t from Q

7. for all neighbor vertex r of t do

8. if m[r] = 0 then

9. if dv[r] = du[r]+1 and d′v[r] 6= du[r]+1 then

10. AV(u,v)(u)← AV(u,v)(u)∪{r}
11. Enqueue r into Q

12. end if

13. m[r]← 1
14. end if

15. end for

16. end while

17. Repeat the above steps by mapping u← v and v← u to identify AV(u,v)(v)

Fig. 3.2 Affected vertices identification

edges, i.e., we will firstly compute affected vertices for all edges attached to u then

we move to other vertices for processing the rest single-edge failure cases.

Figure 3.2 shows two examples of identifying affected vertices. It uses the same

graph in Figure 3.1. In this figure, the first example is Case (a), where the failed edge

is (0,8). The second example is Case (b), where the failed edge is (0,2). In Case (a),

starting from vertex 0, we identify the affected vertex set rooted at 0 as AV(0,8)(0) =
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{0,2} since only vertices 0 and 2 have changed their distance to vertex 8. Meanwhile,

starting from vertex 8, we identify the affected vertex set rooted at 8 as AV(0,8)(8) =

{8} since only vertex 8 has changed its distance to vertex 0. Similarly, in Case (b), as

can be observed in the figure, we have AV(0,2)(0) = {0,4,8} and AV(0,2)(2) = {2}.

3.4.3 Relabeling: Supplemental Index Construction

After identifying all affected vertices, we can start relabeling the affected vertices in

order for fast computation of shortest path distances in the graph with single-edge

failure. Only supplemental indexes will be created, i.e., only changed distance infor-

mation will be captured in supplemental indexes. All the unchanged distance infor-

mation will be still computed using the original indexes (such as the distance labeling

in Table 3.1 for the example graph in Figure 3.1). We develop a novel relabeling

algorithm, namely the BFS ALL algorithm, for the supplemental index construction.

Detailed descriptions of the algorithm are presented in the following.

BFS ALL algorithm

The BFS ALL algorithm relabels affected vertices based on the traditional BFS algo-

rithm. The detail steps are shown in Algorithm 2. Figure 3.3 also depicts an example

of the supplemental index construction process using the BFS ALL algorithm.

The failed edge is (0,8) in this example and there are three steps in Figure 3.3.

Each step relabels one affected vertex. Also the distance information will be kept at

each BFS step, using a set of temporary labels stored in T L. This distance information

in T L can be used to prune label entries at the later BFS steps of the index construction

process for all vertices in the graph and some vertices can be pruned during a BFS

process. At Step (1), BFS ALL algorithm performs BFS from vertex 0. The number

beside each node is the distance from that node to the BFS root, vertex 0. In this step,

vertex 8 is the only affected vertex in AV(0,8)(8) that has larger vertex order than vertex
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Algorithm 2 BFS ALL algorithm

Input: G, (u,v), AV(u,v)(u), AV(u,v)(v)
Output: The supplemental index SIu and SIv for the edge failure case of (u,v)

1. G′← G−{(u,v)}
//Construct SIu for vertices in AV(u,v)(u)

2. SIu← /0
3. Initialize temporary labels T L← /0
4. for all vertex r ∈ AV(u,v)(u) (in ascending vertex order) do

5. Initialize supplemental label for r: SL← /0
6. Start BFS algorithm to compute all the distances from r to any vertices in

AV(u,v)(v) that have larger vertex order than σ(r) and record all temporary la-
bels for all encountered vertices in T L; during the BFS process, if a new tem-
porary label entry for a vertex w is redundant in T L, all neighbor vertices of w

can be ignored by BFS
7. for all vertex t in AV(u,v)(v) that has σ(t)> σ(r) and has been searched by the

above BFS process do

8. if (t,dG′(t,r)) is not a redundant label entry in SL then

9. SL← SL∪ (t,dG′(t,r))
10. end if

11. end for

12. SIu← SIu∪ (r,SL)
13. end for//Construct SIv for vertices in AV(u,v)(v)
14. Repeat the above steps by mapping u← v and v← u to construct SIv for vertices

in AV(u,v)(v)

0. Therefore, the BFS process starting from vertex 0 will stop at distance 2 and will

not examine vertices 9 and 10. After the BFS process stops, we add a supplemental

label entry to the supplemental label of vertex 8, resulting in SL(0,8)(8) = {(0,2)}. At

Step (2) in Figure 3.3, BFS process starts from vertex 2. Similarly, the BFS process

starting from vertex 2 will stop at distance 3. In this process, three vertices can be

pruned, including vertex 0, vertex 1 and vertex 4, for which we do not add any new

labels. This is the early-pruning strategy. Then we may want to add another label

entry (2,3) into SL(0,8)(8). But based on the original index shown in Table 3.1 and

the current supplemental label SL(0,8)(8) = {(0,2)}, we find that (2,3) is a redundant

label entry in SL(0,8)(8) = {(0,2)} since the distance between vertex 2 and vertex 8

can be computed based on SL(0,8)(8) = {(0,2)} and the original index in Table 3.1.

Finally, at Step (3), the BFS process will start from vertex 8. However, since no vertex
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Fig. 3.3 Supplemental index construction: BFS ALL on failed edge (0,8)
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in in AV(0,8)(0) has smaller vertex order than vertex 8, no label entry will be added to

the supplemental index at this step. The final supplemental index that is constructed

for the failed edge (0,8) in the graph shown in Figure 3.1 is shown at Step (3). We

will show later in Section 3.4.4 that such supplemental index is adequate for distance

query evaluation.

3.4.4 Distance Query Evaluation on SIEF

For each single-edge failure case, we classify all possible distance queries into differ-

ent types. Suppose the graph is G, the original labeling index is L, the failed edge is

(u,v), the affected vertices are in AV(u,v)(u) and AV(u,v)(v), and the supplemental index

is SI(u,v) (here, SI(u,v) = SIu∪SIv). We also denote G′ = G−{(u,v)}. Given any pair

of vertices s, t, we would like to compute the distance between s, t in G′, denoted as

dG′(s, t). Then we have the following different cases:

• Case 1: s /∈ AV(u,v)(u)∪AV(u,v)(v) and t /∈ AV(u,v)(u)∪AV(u,v)(v)

• Case 2: s /∈ AV(u,v)(u)∪AV(u,v)(v) and t ∈ AV(u,v)(u)∪AV(u,v)(v), or similarly,

s ∈ AV(u,v)(u)∪AV(u,v)(v) and t /∈ AV(u,v)(u)∪AV(u,v)(v)

• Case 3: s ∈ AV(u,v)(u) and t ∈ AV(u,v)(u), or similarly, s ∈ AV(u,v)(v) and t ∈

AV(u,v)(v)

• Case 4: s ∈ AV(u,v)(u) and t ∈ AV(u,v)(v), or similarly, s ∈ AV(u,v)(v) and t ∈

AV(u,v)(u)

Case 1 is trivial and we must have dG′(s, t) = dG(s, t) = dist(s, t,L).

In Case 2 and in Case 3, according to Lemma 6 and the definition of affected

vertices (see analysis in Section 3.4.2), we must also have dG′(s, t) = dG(s, t) =

dist(s, t,L).

In Case 4, suppose s∈ AV(u,v)(u) and t ∈ AV(u,v)(v) (the other case can be analyzed

in the same way). Obviously, distance between s and t changes to a larger value due
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to the failed edge. If s and t become disconnected to each other in G′, both will not

have labels in SI(u,v), then we have dG′(s, t) = ∞. If s and t is still connected in G′

and without loss of generality, suppose the vertex order is σ(s) < σ(t), then at least

vertex t contains supplemental label entries. This is because in both the BFS ALL

algorithm and the BFS BATCH algorithm, the affected vertex with minimum vertex

order in AV(u,v)(u) (which is at most σ(s)) must produce one supplemental label entry

for vertex t in SI(u,v) (see Lemma 3 for related details). For vertex s itself, if it does not

produce any supplemental label entry for vertex t in SI(u,v), then it must be because the

produced label entry is a redundant label. This means, in either case, the label entries

of the supplemental label for vertex t in SI(u,v) must already contain adequate distance

information for the computation of dG′(s, t). For example, to calculate dG′(2,8) in

Figure 3.3, SL(0,8)(8) = {(0,2)} combining with L(2) = {(0,1) (2,0)} in Table 3.1

is adequate and we can see that dG′(2,8) = 1+2 = 3.

3.4.5 Some Remarks

Initial Index Construction. Pruned Landmark Labeling (PLL) technique presented

in [80] is a state-of-the-art indexing technique for large static graphs. Indexes con-

structed by PLL [80] already have well-ordering property defined in Section 3.3.

Therefore we use indexes constructed by PLL as the initial indexes for all original

graphs in our experiments.

Time Complexity. Our algorithms can be directly applied on indexes constructed by

PLL. Let w be the tree width [80] of G, n be the number of vertices and m be the num-

ber of edges in G. Also let (u,v) be the failed edge. Let p = |AV(u,v)(u)∪AV(u,v)(v)|

for each single-edge failure case (on average). Further, according to analysis of PLL

in [80], the number of label entries per vertex is O(w logn). Then the time complexity

of the BFS ALL algorithm is O(nw logn+ p2w logn), where O(nw logn) is the time

upper bound to build temporary labels T L (note that p BFS rounds are enough to
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build the TL index that contains at most nw logn label entries) and O(p2w logn) is the

time upper bound for redundancy tests.

Variants. Similar to Pruned Landmark Labeling (PLL) technique presented in [80],

our SIEF approach can also be extended to support shortest path queries, weighted

graphs, directed graphs and disk-based query answering. For more details, please

refer to [80].

3.4.6 Applying SIEF in Multi-Edge Failure Graphs

SIEF can be extended to support dual-edge failure or even other types of multi-edge

failure approximately. Take dual-edge failure as an example. Suppose that there is

a shortest path from vertex s to vertex t, which contains two failed edges, (u1,v1)

and (u2,v2) (as shown in Figure 3.4). In order to estimate the new distance with

dual-edge failure using the SIEF framework, we need to divide the original shortest

path into two parts: each part of the path contains only one failed edge. For example,

in Figure 3.4, the shortest path can be divided into path from s to v1 and path from

v1 to t. It is easy to see that we can use SIEF to calculate the length of these two

paths efficiently. The sum of the length of these two paths can be used to estimate

the new distance from s to t after (u1,v1) and (u2,v2) have failed. The dividing

strategy here is called a conservative strategy because we give priority to the nearest

vertex along the original path to include exactly one failed edge. The exception is the

segment for the inclusion of the last failed edge, e.g., the path from v1 to t. We did

not choose the path from v1 to v2 as the segment to include the failed edge (u2,v2).

This is because since it is the last failed edge, according to triangularity, we must have

d(v1,v2)+d(v2, t)≥ d(v1, t), which indicates the path from v1 to t is always a better

choice.

Another path dividing strategy is called aggressive strategy, where we give pri-

ority to the furthest vertex along the path to include exactly one failed edge. For
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Fig. 3.4 Dual-Edge Failure Distance Estimation

example, we can divide the same path from s to t in Figure 3.4 into two paths: one

from s to u2 and the other from u2 to t. In this way, we will obtain another estimation

of the new distance between s and t. We use the smaller estimation as our final esti-

mation of the new distance. Similar strategies can be applied to triple-edge failure or

even cases with more than three failed edges.

It is worth mentioning that applying the conservative strategy to divide the original

path from s to t is equivalent to applying the aggressive strategy to divide the same

path from t to s.

Note that, the disconnectedness of a pair of vertices found by the SIEF framework

is always correct. That is, if s and t in the above discussion become disconnected

after multi-edge failure, the SIEF framework will be able to correctly identify the

disconnection each time. This conclusion is due to the following facts: (1) SIEF

always provides correct answers to distance queries with single-edge failure; (2) if

s and t become disconnected after edge failures, there must exist at least one failed

edge leading to the disconnection between s and t. When SIEF is trying to compute

the new distance avoiding such failed edge using the above mentioned strategies, it

must be able to correctly identify the disconnection caused by this failed edge as well.

As will be shown in Section 3.5, disconnectedness has a great impact on the accuracy

of SIEF on multi-edge failure.
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3.5 Experiments

We evaluated the performance of our proposed SIEF approach and this section reports

the results. All experiments were performed under Linux (Ubuntu 10.04) on a server

provided by eResearch SA2. The server was running on Dell R910 with 32 processing

cores (four 8-core Intel Xeon E7-8837 CPUs at 2.67 GHz), 1024 GB main memory

and 3 TB local scratch disk. All methods were implemented in C++ (the code of PLL

[80] was obtained from the first author’s code repository on GitHub3) using the same

GCC compiler (version 4.4.6) with the optimizer option O3. It is worth mentioning

that although we have a large amount of main memory on the server, the memory

usage of our approach is in fact quite small and as observed during our experiments,

the memory usage was within 12 GB for all datasets.

3.5.1 Datasets

Due to lack of real IoT datasets modeled with graphs, we decided to use some closely

related datasets in our work. Table 3.2 lists the six real-world datasets used in our

experiments. More details on these datasets can be found at the Stanford Network

Analysis Project website4. Similar to [95, 80], we treat all graphs as undirected, un-

weighted graphs.

A brief introduction of our datasets is provided below:

• Gnutella is a snapshot of the Gnutella peer-to-peer file sharing network col-

lected in August 2002. Vertices represent hosts in the Gnutella network topol-

ogy and edges represent connections between the hosts.

2http://www.ersa.edu.au/
3https://github.com/iwiwi/pruned-landmark-labeling
4http://snap.stanford.edu/
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• The dataset Facebook consists of circles (or friends lists) from Facebook,

which were collected from survey participants using a Facebook app called

Social Circles.

• Wiki-Vote contains all Wikipedia voting data from the inception of Wikipedia

till January 2008.

• Oregon is a graph of Autonomous Systems (AS) peering information inferred

from Oregon route-views on May 26 2001.

• Ca-HepTh collaboration network of Arxiv High Energy Physics Theory cate-

gory (there is an edge if authors coauthored at least one paper). The data covers

papers in the period from January 1993 to April 2003 (124 months).

• Ca-GrQc collaboration network of Arxiv General Relativity category. Like

Ca-HepTh, the data covers papers in the period from January 1993 to April

2003 (124 months).

It should be noted that, in Table 3.2, |V | refers to the number of vertices and |E|

refers to the number of edges. In addition, IT denotes the indexing time or index con-

struction time (in seconds) and LN denotes the average number of label entries of each

vertex. We obtained these IT and LN results by using the Pruned Landmark Labeling

(PLL) technique presented in [80]. As mentioned, we applied our index construction

algorithms directly on the indexes constructed by PLL in our experiments.

Table 3.2 Real-world Datasets and Their Statistics

Dataset |V | |E| IT (s) LN

Gnutella 6,301 20,777 0.825 163.647
Facebook 4,039 88,234 0.173 25.887
Wiki-Vote 7,115 103,689 0.525 69.915
Oregon 11,174 23,409 0.080 11.189
Ca-HepTh 9,877 51,971 0.557 75.311
Ca-GrQc 5,242 28,980 0.141 43.828



3.5 Experiments 73

3.5.2 Performance on Single-Edge Failure

We have conducted extensive experiments to validate our proposed approach on single-

edge failure. In the experiments, we compared the average label entry numbers with

and without considering edge failures (Section 3.5.2), index size (Section 3.5.2), and

the numbers of affected vertices (Section 3.5.2). We performed queries with and with-

out SIEF indexes (Section 3.5.2) and great efficiency improvement was observed if

using SIEF indexes. Finally we studied the running time of our approach in terms

of identification time, and relabeling time for each dataset (Section 3.5.2 and 3.5.2).

Note that, we construct SIEF indexes by computing supplemental indexes for all

single-edge failure cases of a given graph.

Supplemental Label Entry Numbers

Figure 3.5 shows the difference between the original label entry number (OLEN) with-

out support of single-edge failure and the supplemental label entry number (SLEN)

with support of single-edge failure. SLEN and OLEN of Wiki-Vote5 have the

biggest gap, i.e., the ratio of SLEN to OLEN is observed around 80. SLEN and

OLEN of Facebook have the second biggest gap and the ratio of SLEN to OLEN

is around 40. For other datasets, the ratios of SLEN to OLEN are all under 10. This

means, compared with the total number of label entries needed for the original graphs

without considering edge failures, in the case of edge failures, the total extra number

of label entries (in supplemental indexes) is less than 10 times of the number of the

label entries in the original index. These results indicate that the SIEF indexes are

very compact.

5We use the first three letters in the names of each dataset (e.g., Wik for Wiki-vote) for better
illustration in the figure.
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Fig. 3.5 Comparisons between supplemental label entry numbers (SLENs) and origi-
nal label entry numbers (OLENs)

Index Size

Figure 3.6 shows the original index size for the graphs with no failed edges and the

supplemental index size when considering edge failures. The sum of the original

index size and the supplemental index size is the total index size for handling short-

est path distances in graphs with all single-edge failure cases. From the figure, the

Gnutella dataset shows comparatively smaller proportion of its supplemental in-

dex over its total index size while the Facebook dataset shows largest proportion

of its supplemental index over the related total index size. The Wiki-Vote dataset

has the largest supplemental index size due to the fact that each single-edge failure

case incurs a large number of affected vertices as well as a relatively large number of

supplemental label entries (for more details, please see Table 3.3).
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Fig. 3.6 Index Size

Affected Vertices

Table 3.3 presents the relationship between affected vertices and average supplemen-

tal label entry number. Avg |AU |/|V | represents the average percentage of affected

vertices in a single-edge failure case, showing the impact of a single-edge failure in

a graph. It is also the average proportion of affected vertices of the original graphs.

Avg |AU | represents the average number of affected vertices from the graph and Avg

SLEN denotes the average number of supplemental label entries in a single-edge fail-

ure case.

From the table, we can see that the smallest percentage and the smallest average

number of affected vertices are both observed in the Ca-GrQc dataset, with values

of 1.486% and 77.884, respectively. We can also see from the table that the average

supplemental label number decreases (or increases) together with the average number

of the affected vertices. Also around 36% of vertices are affected in the Wiki-Vote
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dataset, which is the largest proportion. The largest average number of affected ver-

tices is observed in the Oregon dataset, which is around 2,861 affected vertices for

one failed edge. However, no clear linear relationship is found between the two. The

largest gap occurs in the Oregon dataset, which indicates that the label pruning pro-

cess on the affected vertices is quite powerful, leading to much fewer label entries per

affected vertex. Meanwhile, the smallest gap happens in the Gnutella dataset and

this indicates that label pruning is not very effective in this dataset.

Note that, although the proportion of affected vertices for a single-edge failure

case could be large, as having been clarified in Figure 3.6, the final SIEF index for all

single-edge failure cases is still of moderate sizes compared with the original index.

Table 3.3 Affected Vertices

Dataset Avg |AU |/|V | Avg |AU | Avg SLEN

Gnutella 6.053% 381.386 78.445
Facebook 16.099% 650.241 47.042
Wiki-Vote 35.841% 2,550.090 396.971
Oregon 25.605% 2,861.070 45.323
Ca-HepTh 2.743% 270.881 51.095
Ca-GrQc 1.486% 77.884 13.064

Query Time

Table 3.4 shows the average BFS query time and the average SIEF query time. The

former represents query time without using indexes proposed in this work, while

the latter represents the query time when using SIEF indexes. From the table, we

can see that the difference for Oregon dataset is the least. But using SIEF indexes

still achieves at least 40 times faster when compared with the traditional BFS query

approach. The largest gap occurs in the Facebook dataset, where the average BFS

query time is around 500 times more than the SIEF query time. These results show

that when using SIEF indexes, the query efficiency can be improved significantly and

the query response times are normally no more than 5 µs. As mentioned in Section
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3.4, we use supplemental indexes to support edge failures, the query process needs to

examine the supplemental indexes first. When examining the supplemental indexes,

SIEF checks whether the querying source and querying destination are both affected

vertices given the edge failure constraint using binary search strategy. Based on the

searching result, SIEF can find out whether we can compute the shortest path distance

based only on the supplemental indexes, based on both the supplemental indexes and

the original indexes, or based only on the original indexes. Nevertheless, the querying

process is still much faster. The main reason is that the number of affected vertices for

each single-edge failure case is typically small (more details are presented in Section

3.5.2) and hence the binary search process finishes quickly. This results in fast query

responses in SIEF.

Table 3.4 Average Query Time

Dataset BFS Query Time SIEF Query Time

Gnutella 140.329 µs 0.452 µs
Facebook 243.060 µs 0.522 µs
Wiki-Vote 284.867 µs 1.100 µs
Oregon 163.465 µs 4.985 µs
Ca-HepTh 325.196 µs 0.689 µs
Ca-GrQc 159.412 µs 0.479 µs

Identification Time

Table 3.5 shows the total time for identifying affected vertices for all single-edge

failure cases. From the figure, we can see that, for the most datasets, the identifica-

tion process can be done fairly fast and is normally finished within 80 seconds. The

exception is Wiki-Vote, which requires a bit more than 600 seconds. The fast

identification time is mainly because the affected vertices can be identified in a BFS

manner and we only need to examine the distances between the affected vertices to

one of the end vertices of a failed edge.
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Table 3.5 Average Identification Time

Dataset Identification Time

Gnutella 43.3708 s
Facebook 80.6844 s
Wiki-Vote 612.522 s
Oregon 35.6307 s
Ca-HepTh 36.2022 s
Ca-GrQc 4.32942 s

Labeling Time

Figure 3.7 shows the time for relabeling the affected vertices, which need extra dis-

tance label information to maintain correct distances to some other vertices due to a

single-edge failure. Here, we used the estimated time for naive method (shown as

“Estd Time for Naive Method” in the figure) as the baseline. The naive method refers

to the method that we recompute a complete distance labeling index for each single-

edge failure case. The process of labeling a new graph with a single-edge failure

should be almost the same as the process of labeling the original graph. Therefore,

the total labeling time of the naive method can be estimated by multiplying the total

edge number in the original graph, i.e., the total number of single-edge failure cases,

with the index time of the original graph (see Table 3.2).

Then, we compared the labeling times of the naive method and the the labeling

method proposed in our work, BFS ALL. From the figure, we can see that on some

datasets, such as Gnutella, Wiki-Vote, Ca-HepTh and Ca-GrQc, BFS ALL

outperforms the naive method an order of magnitude. On Facebook, BFS ALL can

also perform close to an order of magnitude faster than the naive one. However, BFS

ALL is only slightly better than the naive method on Oregon and the cause is that

this dataset contains a large number of affected vertices and the label-pruning strategy

in BFS ALL does not work well. Overall, BFS ALL method outperforms the naive

method in most datasets and can reduce the labeling time by an order of magnitude.
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Fig. 3.7 Labeling Time

3.5.3 Performance on Multi-Edge Failure

We have conducted experiments to evaluate SIEF in multi-edge failure graphs, in-

cluding correctness and disconnectedness, distance error ratio, and average query

time. All experimental results reported here were obtained by performing separate

multi-edge failures along 100,000 shortest paths between 100,000 random pairs of

vertices.

When we performed multi-edge failures along a shortest path, we randomly chose

the failed edges. If the shortest path contained insufficient edges, we would looked

up a different pair of vertices and tried to perform multi-edge failure again. Such pro-

cesses finished when we had identified a large enough number of multi-edge failure

tests.

Correctness and Disconnectedness

We study correctness and disconnectedness in Figure 3.8 for dual-edge failure. Here,

correctness refers to the proportion of correct answers provided by the SIEF frame-
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work, including disconnectedness, which is the proportion of disconnections occurred

in all 100,000 tests.

From Figure 3.8, we see that the correctness is more than 30% for five datasets and

some correctness may exceed 40%. The exception is Gnutella, whose correctness

is slightly better than 20%. In terms of disconnectedness, we can easily spot that the

disconnectedness is very high in Gnutella, Wiki-Vote and Oregon and is very

close to the correctness. In contrast, the gaps between correctness and disconnected-

ness are much larger in Facebook, Ca-HepTh and Ca-GrQc. This indicates that

in these datasets, SIEF can correctly answer a large proportion of distance queries for

pairs of vertices that are still connected after dual-edge failure.

We then study correctness and disconnectedness in Figure 3.9 for triple-edge fail-

ure. It is interesting to observe that the correctness in Gnutella, Wiki-Vote and

Oregon improves with an increase about 10% to 15% compared with dual-edge fail-

ure, largely due to the increase of disconnectedness. In the meantime, the correctness

in Facebook, Ca-HepTh and Ca-GrQc drops dramatically while disconnected-

ness is similar to that of dual-edge failure. Compared with the correctness for dual-

edge failure, this indicates that SIEF fails to answer a large proportion of distance

queries exactly for pairs of vertices that are still connected after introducing one more

failed edge.

Due to the fact that the more failed edges we have on a shortest path, the more

disconnections we would have, we just omit the experimental results of other types

of multi-edge failure.

Distance Error Ratio

In Table 3.6, average distance error ratio is studied. Here, distance error ratio is

defined as |estimated distance−actual distance|
actual distance

. From the table, we can see that for dual-edge

failure, the average distance error ratio is normally less than 0.5, except Gnutella,
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Fig. 3.8 Correctness and Disconnectedness on Dual-Edge Failure

where the average distance error ratio is 0.663. For triple-edge failure, the average

distance error ratio is about doubled compared to that of dual-edge failure.

Table 3.6 Average Distance Error Ratio

Dataset Dual-Edge Failure Triple-Edge Failure

Gnutella 0.663 1.311
Facebook 0.194 0.386
Wiki-Vote 0.454 0.944
Oregon 0.379 0.760
Ca-HepTh 0.223 0.407
Ca-GrQc 0.195 0.378

Query Time on Multi-Edge Failure

The query time performance on multi-edge failure is presented in Table 3.7. Com-

pared with the query time performance in Table 3.4, we see that, the query time on

dual-edge failure is around 4 times of that on single-edge failure while the query

time on triple-edge failure is around 6 to 7 times of that on single-edge failure. This

indicates a linear growth of query time for multi-edge failure cases.
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Fig. 3.9 Correctness and Disconnectedness on Triple-Edge Failure

Table 3.7 Average Query Time

Dataset Dual-Edge Failure Triple-Edge Failure

Gnutella 1.785 µs 3.041 µs
Facebook 2.051 µs 3.502 µs
Wiki-Vote 4.332 µs 7.453 µs
Oregon 19.741 µs 33.297 µs
Ca-HepTh 2.734 µs 4.620 µs
Ca-GrQc 1.882 µs 3.109 µs

3.6 Summary

In this chapter, we have studied the computation of shortest path distance in failure-

prone graphs, a fundamental and challenging problem in many applications in the

smart city computing domain, such as dynamic taxi ridesharing, control of traffic

congestion, urban road network planning, etc.

In particular, we have focused on the constructions of compact distance label-

ing for all possible single-edge failure cases. A generic framework, SIEF, has been

designed for this purpose. Based on the most recent technique Pruned Landmark La-

beling (PLL) [80] that handles only static graphs, we have implemented an extended

version using the SIEF framework developed in this chapter. Extensive experiments
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have also been performed using six real-world graphs to confirm its effectiveness and

efficiency. SIEF is able to support compact index construction for all single-edge

failure cases in graphs efficiently. Specifically, the SIEF index size is comparable

to that of the indexes constructed for original static graphs, which is very compact.

SIEF can answer distance queries with single-edge failure constraints several orders

of magnitude faster than traditional Breadth-First-Search (BFS) algorithms. More-

over, SIEF can answer distance queries on multi-edge failure with high accuracy and

fast response time.





Chapter 4

Matching over Linked Data Streams

This chapter leverages semantic technologies, such as Linked Data, which can facil-

itate machine-to-machine (M2M) communications to build an efficient information

dissemination system for semantic IoT. The system integrates Linked Data streams

generated from various data collectors and disseminates matched data to relevant data

consumers based on triple pattern queries registered in the system by the consumers.

We also design two new data structures, TP-automata and CTP-automata, to meet the

high performance needs of Linked Data dissemination. We evaluate our system us-

ing a real-world dataset generated from a Smart Building Project. With the new data

structures, the proposed system can disseminate Linked Data faster than the existing

approach with thousands of registered queries. This chapter is based on our research

reported in [96, 97].

4.1 Overview

As of 2012, 2.5 quintillion (2.5× 1018) bytes of data were being created daily1. In

IoT, connecting all of the things that people care about in the world becomes possible

[98]. However, all these things will produce much more data than nowadays. The

1http://www-01.ibm.com/software/data/bigdata/
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volumes of data are vast, the generation speed of data is fast and the data/information

space is global. By exploiting such data in IoT, cities will become smarter and more

efficient. Some promising IoT applications in future smart cities include resources

management issues for modern cities [99], and effective urban street-parking man-

agement for reducing traffic congestion and fuel consumption [100]. Indeed, IoT is

one of the major driving forces for big data analytics.

Given the scale of IoT, topics such as distributed processing, real-time data stream

analytics, and event processing are all critical, and need to be revisited in order to im-

prove upon existing technologies for applications of this scale [2, 101]. In this context,

semantic technologies such as Linked Data (see http://linkeddata.org/), which aim to

facilitate machine-to-machine (M2M) communications, play an increasingly impor-

tant role [102]. Linked Data is part of a growing trend towards highly distributed sys-

tems, with thousands or potentially millions of independent sources providing struc-

tured data. Due to the large amount of data produced by various kinds of things, one

challenging issue is how to efficiently disseminate data to relevant data consumers.

In this chapter, we focus on studying the Internet of Things (IoT) from a data

perspective. As in IoT, data is processed differently compared with the processing in

the traditional Internet environments (i.e., Internet of Computers). In the Internet of

Computers, both the main data producers and consumers are human beings. However,

in the Internet of Things, the main actors become things, which means things are

the majority of data producers and consumers. Therefore, in IoT, addressable and

interconnected things, instead of humans, act as the main data producers, as well as

the main data consumers. Computers will be able to learn and gain information and

knowledge to solve real world problems directly with the data fed from things. As an

ultimate goal, computers enabled by IoT technologies will be able to sense and react

to the real world for humans.

To deal with such challenge, it is imperative to efficiently retrieve the most rele-

vant data from the big data generated in IoT and effectively extract useful information
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(e.g., in the process converting “data” into “information” or “knowledge”). We pro-

pose in this chapter an efficient data dissemination system for semantic IoT by leverag-

ing semantic technologies, such as Linked Data. Our system will be very helpful and

efficient in the retrieval of relevant data from the deluge of IoT data, which can then

facilitate the extraction of required information. The system firstly integrates data gen-

erated from various data collectors. Then it transforms all the data into Linked Data

streams in Resource Description Framework (RDF) format (see www.w3.org/RDF).

Meanwhile, data consumers can register their interests in the form of Basic Graph Pat-

terns (BGPs) composed of simple triple patterns in the system. Based on these BGPs,

the system disseminates matched Linked Data to relevant users. After receiving rele-

vant data, these users can further make use of the data to extract information for their

own purposes, such as environment monitoring, event detection, complex event pro-

cessing, and so on. It should be noted that we will not discuss the data processing at

the user side, instead we focus ourselves on how to efficiently match a large number

of BGP queries against Linked Data streams in batch mode. We highlight our main

contributions in the following.

• We identify new Linked Data dissemination needs in the context of the Internet

of Things, which requires to process continuous data requests in batch mode

efficiently.

• We develop two new data structures, Triple Pattern automata (TP-automata) and

Conjunctive Triple Pattern automata (CTP-automata), for efficiently matching

Linked Streams against a large number of single or conjunctive triple pattern

queries based on automata techniques. We also develop novel techniques to

evaluate these queries efficiently.

• We conduct extensive experiments using a real-world dataset generated in a

Smart Building Project. The results show that: 1) when processing single triple

patterns using TP-automata, the system can disseminate Linked Data at one
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million triples per second with 100,000 registered user queries, which is sev-

eral orders of magnitude faster than existing techniques; 2) when processing

conjunctive triple patterns using CTP-automata, the system can disseminate

Linked Data at a speed of an order of magnitude faster than the existing ap-

proaches with thousands registered conjunctive queries.

The rest of this chapter is organized as follows. We present the framework and

the technical details of our approach in Section 4.2. In Section 4.3, we report the

results of an extensive experimental study. In Section 4.4, we review the related work.

Finally, we present some concluding remarks in Section 4.5.

4.2 Linked Data Dissemination System

In order to disseminate high-quality information and provide high-performance match-

ing services to data consumers (or subscribers), we aim to design a system that will

not return false-negative match results. Therefore, we investigate pattern matching in

this article. Pattern matching performs individual component matching between RDF

triples and BGPs. It does not consider semantic relatedness between an RDF triple

and a BGP. It may return false positive matching results but not false negative ones.

Recent work on pattern matching includes Linked Data stream processing [31] and

stream reasoning [30]. However, since these solutions are mainly designed for opti-

mizations of individual query evaluations, they are not quite suitable for processing a

large number of concurrent queries.

An example of pattern matching is that pattern (?s, :is, :Student) will match triple

(:James, :is, :Student) but will not match (:James, :is, :PhDStudent). Other types

of matching include match estimation and semantic matching, both of which may

return false-negative results. Again, take pattern (?s, :is, :Student) as an example. In

match estimation, the main task is to estimate which dataset matches pattern (?s, :is,
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:Student) the best by using some summarization techniques among multiple datasets

[103] to avoid querying all known datasets directly. In contrast, semantic matching

will match semantically related triples compared to a specified pattern [104]. For

example, pattern (?s, :is, :Student) may match (:James, :is, :PhDStudent) since the

term :Student in the pattern is semantically related to :PhDStudent in the triple.

4.2.1 System Overview

Figure 4.1 shows an overview of our system in the smart city scenario. We assume

that data generated by all kinds of things will be represented in the form of Linked

Data streams using RDF (for the purpose of facilitating (M2M communications). Our

system consists of two main components: the matching component and the index con-

struction component. Data consumers (humans and/or smart things in the city) can

register their interests as user queries in the system. The index construction compo-

nent constructs an index for all user queries. The matching component evaluates the

incoming Linked Data streams against the constructed index for efficiently match-

ing triples to the user queries. Finally, the system disseminates the matched data to

relevant data consumers for their further processing.

Smart City Linked Data Data Matching Data Consumption

Data Dissemination

Data Subscription

Fig. 4.1 System Overview
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User Queries. Similar to [105, 106], triple patterns are adopted as the basic units

of user queries in our system. A triple pattern is an expression of the form (s, p,

o) where s and p are URIs or variables, and o is a URI, a literal or a variable. The

eight possible triple patterns are: 1) (#s, #p, #o), 2) (?s, #p, #o), 3) (#s,

?p, #o), 4) (#s, #p, ?o), 5) (?s, ?p, #o), 6) (?s, #p, ?o), 7) (#s,

?p, ?o), and 8) (?s, ?p, ?o). Here, ? denotes a variable while # denotes a

constant. Similar to data summaries in [103], we can also apply hash functions2 to

map these patterns into numerical values.

When a user query contains only one triple pattern, such queries are called single

triple pattern queries. Meanwhile, a user query can also be expressed as a conjunctive

triple pattern query composed of multiple triple patterns [105, 106]. Conjunctive

queries can express data needs much more accurately compared with single triple

pattern queries. A conjunctive query q has the form of:

?x1, . . . ,?xn : (s1, p1,o1)∧ (s2, p2,o2)∧· · ·∧ (sn, pn,on)

where ?x1, . . . ,?xn are variables, each (si, pi,oi) is a triple pattern, and each variable

?xi appears in at least one triple pattern (si, pi,oi). Variables will always start with

the ‘?’ character. Variables ?x1, . . . ,?xn are also called answer variables in order to

distinguish them from other variables in the query.

Representations of Queries and Triples. In our Linked Data dissemination system,

when the user queries (in the form of single or conjunctive triple pattern queries)

are registered, all queries are transformed into numerical values. The reason for this

is that the comparisons between numbers are faster than strings [103]. Note that,

in such case, we will have three numbers for the three components in a query as

described above. Then a suitable index can be constructed for efficient evaluation

2There are many different hash functions that are suitable for this purpose. For more details, please
refer to [103].
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q1: (a, b, c)

q2: (?, b, c)

q3: (a, b, d)

q4: (a, b, c)

a b c
{q1}

? b c
{q2}

a b d
{q3}

a b c
{q4}

Fig. 4.2 Structure of TP-automata

between Linked Data streams and user queries. Before a matching process starts, RDF

triples in the data streams will be mapped into numerical values as well. Then, these

numerical represented triples will be matched with conjunctive queries represented as

numerical values in the constructed indexes.

4.2.2 TP-automata for Single Triple Pattern Query Matching

Automata techniques have been adopted to process XML data streams [107]. They

are mainly based on languages with SQL-like syntax, and relational database exe-

cution models adapted to process streaming data. In our system, to support pattern

matching, we also apply automata to match each individual component of a triple

with its counterparts of triple patterns in single triple pattern queries efficiently. We

call this approach Triple Pattern automata (TP-automata).

As mentioned, operating on numbers is more efficient than operating on strings.

Note that when we map triple patterns into numerical values, we treat variables in a

triple pattern as a universal match indicator, e.g., represented by “?". This indicator

will be mapped into a fixed and unique numerical value but not the whole range of

a specific coordinate axis. This unique numerical value will be treated differently as

well later in the triple evaluation process.

Figure 4.2 depicts the construction process of TP-automata. Firstly, user queries

will be transformed into triple pattern state machines as shown in the middle of Figure

4.2. As can be seen from the figure, each triple state machine contains an initial state,



92 Matching over Linked Data Streams

two internal states, one final state and three transitions. In the figure, the first circle

of a state machine represents the initial state, the next two circles represent the two

internal states and the doubled circle represents the final state. The three arrows

associated with conditions are three transitions between different states. Similar to

[107], these state machines can be combined into one machine by exploiting shared

common states with same transitions. The combined machine, TP-automata, is shown

on the right of Figure 4.2. The shaded circles represent combined states.

To perform pattern matching over TP-automata, triples in the Linked Data stream

will be firstly mapped into numerical values. For example, suppose a triple (s, p, o)

is mapped into a 3D point (a, b, c). The system will match it against TP-automata in

the following process. It firstly checks the initial state of TP-automata and looks for

state transitions with condition a or condition ?. Following the state transitions, state

1 and state 2 become the current active states at the same time. It then looks for state

transitions with condition b or ? from state 1 and state 2. Following the transitions,

state 3 and state 4 become active states. Finally, following transitions with condition

c or ? from state 3 and state 4, two final states, state 5 and state 7, are reached. By

checking both final states, the system returns q1,q2,q4 as the matching results. It

should be noted that q3: (a, b, d) will not match the input triple (a, b, c) as its object

component’s pattern is d, which does not match with c. The match process stops if

and only if all current active states are final states or states with no satisfied transition.

4.2.3 CTP-automata for Conjunctive Triple Pattern Query Match-

ing

We also apply automata to match each individual component of a triple with its coun-

terparts of triple patterns in conjunctive triple pattern query efficiently. Similarly, we

call this approach Conjunctive Triple Pattern automata (CTP-automata).
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Construction of CTP-automata. Figure 4.3 depicts the construction process of

CTP-automata. There are two conjunctive queries, q1 : (?x1,b,c)∧ (?x1,d,e) and

q2 : (?x2,b,c)∧ (?x2,d,e)∧ (a,d,?x2). Accordingly, there are two triple patterns in

q1 and three triple patterns in q2. Firstly, all the triple patterns in the conjunctive

queries will be transformed into triple pattern state machines as shown in the middle

of Figure 4.3. As can be seen from the middle part of the figure, each triple state ma-

chine contains an initial state, two internal states, one final state, and three transitions.

In the figure, the first circle of a state machine represents the initial state, the next

two circles represent the two internal states and the doubled circle represents the final

state. The three arrows associated with conditions represent three transitions between

different states.

Suppose there are n conjunctive queries for the construction of CTP-automata

and each query contains p patterns on average. Then the time complexity of the

CTP-automata construction process will be O(np). This is because we can add each

pattern into the CTP-automata in an incremental manner and each pattern will require

constant time to be inserted (we can adopt hashing based data structures to achieve

constant time insertion of each pattern).

It is worth mentioning that we ignore variable names at this stage due to the fact

that when processing triples in the Linked Data stream, at the first step, we have to

evaluate these triples one by one and that variable naming does not have any rela-

tionships between different conjunctive queries. For example, (?x1,b,c)∧ (?x1,d,e)

and (?x2,b,c)∧ (?x2,d,e) actually refer to the same conjunctive query. However,

the variable naming does matter within the same conjunctive query. For example, in

(?x1,b,?x2)∧ (?x2,d,e), variables ?x1 and ?x2 refer to different triple components.

We leave the resolution of different variable names within the same conjunctive query

in the later stage, called Conjunctive Constraints Resolution (CCR)

stage. Before that, we need to evaluate each triple against each single triple state

machine first, which is the Triple Pattern Matching (TPM) stage.
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q1: (?x1, b, c)

     (?x1, d, e)
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{m1}

? d e
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Fig. 4.3 Index Structure and Conjunctive Constraints of CTP-automata

Similar to [107], the multiple single triple state machines shown in Figure 4.3

can be combined into one triple state machine by exploiting shared common states

with same transitions. The combined machine, CTP-automata, is shown on the right

of Figure 4.3. The shaded circles represent combined states. We can see from the

figure that, although we have five single triple state machines, after the combination,

the number of single triple state machines drops to three, which have been labeled as

m1,m2 and m3, respectively.

Matching Triple Streams against CTP-automata. During the TPM stage, in order

to perform pattern matching over CTP-automata, when a triple (a, b, c) arrives,

our system firstly checks the initial state of CTP-automata and looks for state transi-

tions with condition a or condition ?. Following the state transitions, state 1 and state

2 become the current active states at the same time. It then looks for state transitions

with condition b or ? from state 1 and state 2. Following the transitions, only state

3 becomes active state and there is no transition triggered from state 2. Finally, fol-

lowing the transition with condition c or ? from state 3, one final state, state 6, is

reached. By checking this final state, the system returns {m1} as the matching result.
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The matching process stops if and only if all current active states are final states or

states with no satisfied transition.

At this TPM stage, the matching results are only intermediate results and the

matched triples are just possible candidates which may satisfy some conjunctive

queries. In order to determine which conjunctive queries have been satisfied, we need

to further evaluate some conjunctive constraints, which will be detailed

next.

Conjunctive Constraints Resolution (CCR) of CTP-automata. It should be noted

that in order to match q1 and q2 in Figure 4.3, all triple patterns they contain must

be matched first. Take query q1 : (?x1,b,c)∧ (?x1,d,e) as an example. Suppose that

triples t1 and t2 match triple patterns (?x1,b,c) and (?x1,d,e), respectively. To ensure

that query q1 can be satisfied by t1 and t2, we need to check first that whether we have

t1.s = t2.s. We call such conditions as conjunctive constraints of a conjunctive query.

All conjunctive constraints must be satisfied before we can assure that a conjunctive

query is satisfied. As mentioned before, the conjunctive constraints checking occurs

at the CCR stage.

In this chapter, we have identified ten conjunctive constraints, including SS, PP,

OO, SO, OS, SSPP, SSOO, PPOO, SOPP, OSPP. Constraint SS means that the sub-

jects of two candidate triples must be matched. More details are shown in Table 4.1.

These constraints can be used to determine whether a conjunctive query has been

satisfied or not so far in the stream.

For example, in Figure 4.3, query q1’s conjunctive constraint is m1m2 →SS and

query q2’s conjunctive constraints are m1m2→SS, m1m3→SO and m2m3→SO. Sup-

pose that triples t1, t2, t3 match triple pattern machines m1,m2,m3, respectively. Ac-

cording to Table 4.1, for t1, t2 to satisfy q1, we need to have t1.s = t2.s. Similarly, for

t1, t2, t3 to satisfy q2, we need to have t1.s = t2.s, t1.s = t3.o and t2.s = t3.o.
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Table 4.1 Conjunctive Constraints

Conjunctive

Constraints

Description Checking Details

SS The subjects of two candidate
triples must be matched

t1.s = t2.s

PP The predicates of two candidate
triples must be matched

t1.p = t2.p

OO The objects of two candidate triples
must be matched

t1.o = t2.o

SO The subject of a candidate triple in
the first pattern machine matches
the object of a candidate triple in
the second pattern machine

t1.s = t2.o

OS The object of a candidate triple in
the first pattern machine matches
the subject of a candidate triple in
the second pattern machine

t1.o = t2.s

SSPP The conjunction of both SS and PP
constraints

t1.s = t2.s and t1.p =
t2.p

SSOO The conjunction of both SS and OO
constraints

t1.s = t2.s and t1.o =
t2.o

PPOO The conjunction of both PP and OO
constraints

t1.p = t2.p and
t1.o = t2.o

SOPP The conjunction of both SO and PP
constraints

t1.s = t2.o and t1.p =
t2.p

OSPP The conjunction of both OS and PP
constraints

t1.o = t2.s and t1.p =
t2.p
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... ... ti   ti+1  ti+2  ti+3 ... ... ti+(T-1)  ti+T  ti+(T+1) ... ...

Fig. 4.4 Maintenance of Candidate Triple List

Dynamic Maintenance of the Matching Candidate List. In order to check conjunc-

tive constraints, triples in the stream that match some triple pattern machines will be

buffered for this purpose. Since the Linked Stream can be considered infinite, the

buffered triple lists for triple pattern machines may grow all the time. To avoid this

issue, we need to specify a sliding window to confine our matching scope. That is,

we only consider matching within the sliding window.

Figure 4.4 shows two sliding windows with size T : w1 and w2, where only the

most recent T triples will be considered for our matching. In order to evaluate con-

junctive constraints, we need to update the buffered candidate triple list each time a

triple arrives in or leaves the window. In Figure 4.4, for w1, we have got matching

results for all three single triple pattern machines, m1,m2,m3, in Figure 4.3. After

receiving a new tripe, ti+T , the oldest triple ti will be removed from all candidate lists

that contain ti. In this example, only candidate list for m1 contains ti and hence ti will

be removed from that candidate list. Further, suppose the new arriving triple ti+T will

be matched with machine m3. Then ti+T will be added to the candidate list for m3.

It is obvious that, each time when the sliding window moves forward by one triple,

we should consider all the buffered lists affected by the leaving triple and the joining

triple in the sliding window to verify conjunctive constraints.



98 Matching over Linked Data Streams

4.3 Experimental Evaluation

In this section, we report our experimental evaluation of the proposed approach. We

will first describe the experimental settings, and then report the experimental results.

4.3.1 Experimental Setup

The dataset used in our experiments was generated in a Smart Building Energy Project

[108]. The energy readings were collected from 4–19 August 2014. In total, there are

around 6.2 million triples in the dataset. An event example is depicted in Figure 4.5.

This event is a power consumption event, showing the real-time power consumption

in Room01 of building01. As shown in the event, the power consumption in Room01

at the moment of “2014 08 12T18:17:18" was 171.87 watts.

We evaluated the performance of our approach in terms of average construction

time (in milliseconds) of the indexes and average throughput (in number of triples per

second). We compared hash-based implementation (i.e., mapping triples and queries

into numerical values, denoted as HashMat in the figures) with string-based imple-

mentation (i.e., using triples and queries as it is, denoted as StringMat in the figures).

We also compared our methods with an existing approach, CQELS [31], which sup-

ports parallel query evaluation on Linked Data streams. Both TP-automata and CTP-

automata engines, and CQELS3, were all implemented on Java Platform Standard

Edition 7 running on Linux (Ubuntu 12.10, 64-bit Operating System), with quad-core

CPU@2.20GHz and 4 GB main memory. We ran each experiment 10 times in order

to ensure consistency of results and reported the average experimental results.

3The source code and documentation of CQELS can be obtained via http:// code.google.com/
p/cqels/

http://code.google.com/p/cqels/
http://code.google.com/p/cqels/
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Fig. 4.5 An Event Example

4.3.2 Evaluation of TP-automata

As an initial work, we used simple BGPs that contain only a single triple pattern in

a query as queries in the experiment. We randomly generated BGPs using the seven

patterns mentioned in Section 2 based on our dataset. We did not consider (?s, ?p, ?o)

in our experiment as it requires every triple in the Linked Data stream. In such case,

no query index is needed. We generated from 10,000 queries to 100,000 queries.

Firstly, average construction time is compared in Figure 4.6. The construction

times for both hash-based TP-automata and string-based TP-automata are similar to

each other in most settings. For larger numbers of queries, such as 75k and 100k

queries, the construction of string-based indexes takes slightly longer time. Normally,

the construction can be completed within a few hundred milliseconds. However, the

construction time of CQELS takes much longer, which normally requires around ten

thousand milliseconds.

Throughput performance of pattern matching is depicted in Figure 4.7. It shows

some large differences between CQELS and TP-automata based approaches (Hash-

Mat and StringMat). Generally, HashMat and StringMat can achieve throughput at

the speed of nearly a million triples per second and are about four orders of magnitude

faster than CQELS. The main reason for this is that CQELS is a much more compre-

hensive system focusing on optimizing evaluation of queries with complex operators
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Fig. 4.6 Average Construction Time of TP-automata
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Fig. 4.7 Average Throughput Evaluation of TP-automata

and semantics but not on evaluation of a large set of concurrent and simple queries

over Linked Data streams. In this regard, our approach can also be adapted to com-

plement CQELS for dealing with our Linked Data dissemination scenario. Regarding

HashMat and StringMat, in most cases, HashMat is about twice throughput speed

compared with StringMat.
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Queries Recall Precision F1 Score

10k 100% 100% 100%
25k 100% 100% 100%
50k 100% 99.99975% 99.99987%
75k 100% 99.99982% 99.99991%
100k 100% 99.99960% 99.99980%

Table 4.2 Matching Quality of HashMat (When the Recall is 100%) in TP-automata

Finally, we also investigated the matching quality of hash-based TP-automata

(HashMat) via Precision, Recall and F1 Score [109]. This is because collisions are

difficult to avoid in any hash-based approaches and false positives exist in hash-based

TP-automata, which affects matching quality. Specifically, we look into Precision and

F1 Score when the Recall is 100%. As can be seen in Table 4.2, the Precision and

F1 Score are 100% when the number of queries is 10k or 25k. For larger numbers of

queries (e.g., 50k, 75k and 100k), both Precision and F1 Score are still greater than

99.99950%. This demonstrates that HashMat provides very high matching quality.

4.3.3 Evaluation of CTP-automata

Again, we used random walk method to generate conjunctive triple pattern queries in

the experiments according to the data graph of the event data. The details of param-

eters we used for generating these queries are shown in Table 4.3. The parameters

include query number, pattern number, and window size.

Construction Time. The average construction times of CTP-automata engines and

CQELS engine is presented in Figure 4.8. The construction times for both hash-based

CTP-automata matching engine (HashMat) and string-based CTP-automata matching

engine (StringMat) are close to each other in most settings and are always under 50

milliseconds. The construction of the string-based indexes takes slightly longer time.

By contrast, the construction times of CQELS are much longer than CTP-automata

engines. The main reason is that CQELS has to parse the conjunctive triple pattern
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Parameter Range Default Description

Query Number 100 to 2000 1000 The number of conjunctive
triple pattern queries

Pattern Number 1 to 5 3 The maximum number of
triple patterns in a query

Window Size 10 to 500 100 The window size, in terms
of number of triples, for
the evaluation of conjunc-
tive triple pattern queries

Table 4.3 Workload Parameters for the Experiments of CTP-automata
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Fig. 4.8 Average Construction Time of CTP-automata

queries using a SPARQL-like parser and then register the parsed queries in the pro-

cessing engine. As shown from Figure 4.8, the construction times of CQELS grow

linearly with the number of conjunctive queries. When the query number is 100, the

construction time is around 400 milliseconds. When the number of queries increases

to 2000, the construction time reaches above 1610 milliseconds. This indicates that

the construction of our CTP-automata engines is very fast.
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Fig. 4.9 Average Throughput Evaluation of CTP-automata (Varying Query Number)

Throughput. The throughput performance of pattern matching under varying query

numbers is depicted in Figure 4.9. It shows some similarities between HashMat and

StringMat. In most cases, HashMat shows slightly better throughput speed compared

with StringMat. This indicates that although comparisons on strings are slower than

those on numbers, the differences betwen HashMat and StringMat are negligible. The

main reason for this is that the evaluation process of conjunctive queries spends a

large proportion of time to evaluate the conjunctive constraints on each query and

both HashMat and StringMat use the same strategy to evaluate all these conjunctive

constraints.

However, when compared with CQELS, both HashMat and StringMat outperform

CQELS significantly. To be specific, when the number of conjunctive queries is 100,

the throughput of HashMat and StringMat is more than 64,000 triples per second, and

for CQELS, just slightly more than 3,000. When the number of conjunctive queries is
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Fig. 4.10 Average Throughput Evaluation of CTP-automata (Varying Pattern Num-
ber)

2,000, the throughput of HashMat and StringMat drops to slightly below 3,000 triples

per second while CQELS has a throughput about just 50 triples per second. From

Figure 4.9, we can observe that (1) HashMat and StringMat are normally 20 to 50

times faster than CQELS; (2) the throughput of HashMat, StringMat and CQELS all

drops greatly when increasing the number of conjunctive queries. This also indicates

that the evaluation of conjunctive constraints on each query takes a large amount of

time and is difficult to share evaluation results between different conjunctive queries.

Figure 4.10 further demonstrates this finding. In the figure, we vary the maximum

number of patterns of each conjunctive query. For the same amount of conjunctive

queries, when the pattern number is only 1, the throughput of HashMat and StringMat

is around 30,000 triples per second and for CQELS, it is around 1,200 triples per

second, which is more than 20 times slower. When the pattern number is set to 5, the

throughput of HashMat and StringMat drops to slightly lower than 3,000 triples per
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Fig. 4.11 Average Throughput Evaluation of CTP-automata (Varying Window Size)

second and for CQELS, it drops to around 300 triples per second. This confirms that

the evaluation of conjunctive constraints is time consuming. Similarly, HashMat and

StringMat are both around an order of magnitude faster than CQELS.

Finally, Figure 4.11 depicts the effect of window size, which is varied from 10 to

500. From the figure, we can observe that when the window size increases from 10

to 50, the throughput of HashMat and StringMat drops from 9,500 triples per second

to around 6,200 triples per second. But when the window size increases from 50 to

500, the throughput of HashMat and StringMat only drops to around 4,500 triples per

second. This indicates that the window size does not affect the throughput heavily

like query number and pattern number. Similar effect of window size can be found on

CQELS. When the window size increases from 10 to 500, the throughput of CQELS

drops from around 500 triples per second to slightly lower than 300 triples per second.

Still, HashMat and StringMat are both an order of magnitude faster than CQELS.
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From our experimental study, we can conclude that CTP-automata indexes for

conjunctive queries can be constructed much faster than the query registration process

in CQELS. More importantly, CTP-automata (HashMat and StringMat) significantly

outperforms CQELS in terms of throughput. Further, by using hashing techniques,

HashMat performs slightly better than StringMat.

4.3.4 Limitations

From the experiments, we can see that our system can match Linked Data streams

with single triple pattern queries at high performance, e.g., arriving at close to one

million triples processed per second with 100,000 user queries registered in the sys-

tem. However, our system cannot scale well when processing conjunctive triple pat-

tern queries. As for conjunctive queries, the throughput of our system can only reach

a few thousand triples processed per second with only 2,000 user queries registered.

Such findings in our experiments suggest that there is an imperative need for develop-

ing more advanced techniques for handling a large number of conjunctive queries in

Linked Data streams dissemination systems.

4.4 Related Work

Recent work on data summaries on Linked Data [103] transforms RDF triples into

a numerical space. Then data summaries are built upon numerical data instead of

strings as summarizing numbers is more efficient than summarizing strings. In order

to transform triples into numbers, hash functions are applied on the individual com-

ponents (s, p, o) of triples. Thus a derived triple of numbers can be considered

as a 3D point. In this way, a set of RDF triples can be mapped into a set of points

in a 3D space. To facilitate query processing over data summaries, a spatial index

named QTree [103], which is evolved from standard R-tree [110], is adopted as the
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basic index. Data summaries are designed mainly for indexing various Linked Data

sources and used for identifying relevant sources for a given query. However, data

summaries are not suitable for our Linked Data dissemination system. Firstly, tech-

niques on data summaries, such as QTree, do not consider variables in the BGPs but

only RDF triples with concrete strings. Further, since data summaries are concise and

imprecise representations of data sources [103], they just provide match estimation.

Hence, query evaluation on them would return false negative results, which is not

allowed in our system.

Pattern matching over streams has been studied in [59]. In order to represent

each pattern query, a new query evaluation model is designed for processing pattern

matching over RFID streams, by employing a new type of automaton that comprises a

non-deterministic finite automaton (NFA) and a match buffer, named NFAb. However,

their techniques are not directly applicable to Linked Data stream processing as they

do not specifically consider the characteristics of RDF data and conjunctive triple

pattern matching.

In terms of triple pattern matching, a large body of work which focuses on opti-

mizing individual query processing has also been put forward [106, 111–113]. Specif-

ically, the problem of evaluating conjunctive triple pattern queries is studied in [106]

in the context of Peer-to-Peer (P2P) networks. In [111], an indexing technique for

efficient join processing on RDF graphs is proposed. The index is constructed upon

RDF data directly but not join queries. Similarly, the work in [112] focuses on op-

timizing the processing of conjunctive triple pattern queries, especially star-shaped

group based queries individually. Furthermore, optimization on RDF graph pattern

matching on MapReduce is also studied in [113]. However, the common problem

shared by these research efforts is that, they have not considered the scenarios of op-

timizing conjunctive triple pattern queries in batch mode, which is the focus of our

work in this chapter.
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Semantic matching has also been studied, which aims to match semantically re-

lated RDF triples against BGPs. It may provide false positive match results but not

false negative. Both approximate event matching [104] and thematic event process-

ing [114] apply semantic matching. Similarly, all these techniques will return false-

negative matching results, which is not allowed in our system.

Some existing work on pattern matching of Linked Data, such as stream reason-

ing [30] and Linked Data stream processing [31], does not support large-scale query

evaluation but focuses on the evaluation of a single query or a small number of paral-

lel queries over the streaming Linked Data. Other existing work only studies pattern

matching of multiple single triple patterns [115, 96], but not multiple conjunctive

triple patterns. Therefore, the issue of supporting pattern matching over a large num-

ber of conjunctive triple patterns against Linked Data streams still remains open in

these approaches.

4.5 Summary

In this chapter, we have leveraged semantic technologies, such as Linked Data, to

build an efficient information dissemination system for semantic IoT. Firstly, in order

to efficiently match a large number of user queries that contain only single triple pat-

terns against Linked Data streams, we have proposed TP-automata, an automata based

method designed for efficient pattern matching. In our evaluation, we show that TP-

automata can disseminate Linked Data at the speed of nearly one million triples per

second with 100,000 registered user queries and is several orders of magnitude faster

in terms of both index construction time and throughput compared with the state-of-

the-art technique. Further, using hash-based TP-automata, the throughput is doubled

compared with string-based TP-automata with high matching quality. Secondly, we

have also investigated how to handle user queries with conjunctive triple patterns. In

order to efficiently match a large number of conjunctive triple pattern queries against
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Linked Data streams in batch mode, similarly, we have proposed CTP-automata. In

our evaluation, we show that CTP-automata can disseminate Linked Data an order

of magnitude faster than the existing approaches. This confirms the efficiency and

effectiveness of our proposed approach.

In the next two chapters, we will focus on addressing data sharing needs in the

context of IoT. Chapter 5 will address data sharing with Linked Data (in RDF format)

and Chapter 6 will address data sharing via exchanging XML format data. Both RDF

and XML formats are prevalent data formats for data sharing and exchanging over

the Internet. Therefore, we investigate data sharing techniques for both formats in the

following two chapters.





Chapter 5

Data Sharing in IoT Environments

Part I

In this chapter, we consider large-scale information sharing scenarios among mobile

objects in IoT by leveraging semantic techniques. We propose broadcasting Linked

Data on-air using RDF format to allow simultaneous access to the information and

to achieve better scalability. We introduce a novel air indexing method to reduce the

information access latency and energy consumption. To build air indexes, we firstly

map RDF triples in the Linked Data into points in a 3D space and build B+-trees

based on 3D Hilbert curve mappings for all of the 3D points. We then convert these

trees into linear sequences so that they can be broadcast over a wireless channel. A

novel search algorithm is also designed to efficiently evaluate queries against the air

indexes. Experiments show that our indexing method outperforms the air indexing

method based on traditional 3D R-trees. The research presented in this chapter was

published in [116].
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5.1 Overview

In the era of the Internet of Things [98], due to a large amount of information pro-

duced by all kinds of things, one of the significant challenges is how to efficiently

consume the large amount of information that is generated. In this context, seman-

tic technologies such as Linked Data, which aim at facilitating machine-to-machine

communications, play an increasingly important role [102]. Linked Data is taking an

active role in a trend towards highly distributed systems, with potentially millions of

independent sources providing small amounts of structured data [117]. Event detec-

tion and entity discovery requires an effective way of information sharing. Compared

with the point-to-point communication paradigm, broadcast (or point-to-multipoint)

allows simultaneous access by an arbitrary number of listeners (or clients) without

causing contention of server resources [118]. Considering information sharing among

a large number of mobile and smart objects in the Internet of Things, broadcast is an

attractive mechanism of information dissemination.

To further illustrate the motivation, let us consider the scenario of a future smart

city, where intelligent objects will be acting as data collectors in different places of

the city. They will be able to sense their vicinities (e.g., for air pollution information)

and produce related Linked Data that is understandable by machines. These objects

send such data to a nearby base station for further processing. The base station can

then integrate and process all the data from various data collectors and broadcast to a

much wider audience such as smart objects, which are not direct data collectors but

are interested in such data. Since a smart object is normally only interested in a small

part of the broadcast data, blindly checking every triple on air would lead to very

long access latency and unnecessary energy consumption. As the batteries of smart

objects are often limited, an efficient way to reduce energy consumption and lower

access latency is imperative. Our work focuses on solving this challenge by designing

effective and efficient air indexes for broadcasting Linked Data on air.
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Inspired by recent work on data summaries on Linked Data using RDF format

[103, 117], we adopt a similar technique to index Linked Data. This is mainly be-

cause it can be used to construct very concise indexes, which is critical in saving

mobile clients’ energy consumption. On the server side, we firstly map the RDF

triples contained in Linked Data streams into points in a 3D space and then build

indexes on these 3D points. A straightforward indexing solution is to use traditional

spatial indexes, such as R-tree [110], which recursively index spatial points/objects in

sub-regions. However, it is shown that the performance of R-tree degrades in higher

dimension space [119]. Moreover, R-tree is designed for random access while, in a

wireless broadcast system, indexes can only be accessed sequentially. Therefore, the

R-tree approach is not suitable for indexing Linked Data on air. Motivated by this,

we introduce a novel method by adopting 3D Hilbert curve mappings [120] for all the

points converted from RDF triples. These mappings transform the 3D points into a

sequence of one-dimensional points, which are suitable for efficient sequential access

on air. We also build B+-trees [121] for the one-dimensional points to facilitate point

access on air. Finally, we convert these trees into linear sequences so that they can be

broadcast on a wireless channel. On the client side, a novel search algorithm is de-

signed to efficiently evaluate queries against the air indexes. The experimental results

show that our indexing method outperforms the 3D R-tree based methods. Based on

these trees and the search algorithm, clients can determine what data is of interest and

when the data will be broadcast on the wireless channel. This allows clients to set

the duty cycle to reduce power expenditure. We compare our indexing method with

the method based on traditional 3D R-trees. The experimental results show that our

indexing method outperforms the 3D R-tree based methods.

The rest of this chapter is organized as follows. Section 5.2 discusses related

work. Section 5.3 describes our indexing method in detail. Section 5.4 demonstrates

and discusses experimental results. Finally, some concluding remarks are presented

in Section 5.5.
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5.2 Related Work

The rapid development of Linked Data has accelerated the advent of thousands or

potentially millions of independent data sources, which are crucial for answering

queries.

In order to support efficient query processing among a large number of data

sources, relevant sources that can better answer the queries should be identified first

and then the queries are evaluated on them. Light weight data summaries on Linked

Data [103, 117] have been investigated to determine relevant sources to use during

query evaluation. However, these techniques are mainly designed for random access

in memory or on disk and thus they cannot be applied in a wireless broadcast system

directly, where only linear access is allowed.

The work of CkNN (Continuous k Nearest Neighbor) query processing on air in

[122] has introduced indexes and search algorithms for continuous kNN queries in 2D

spaces. It uses a similar technique discussed in this chapter to index moving objects

modeled in 2D spaces. Their work differs from this work as their main goal is to

support continuous kNN queries in 2D spaces, whilst the main goal of this chapter is

to support queries on Linked Data broadcast in a wireless channel.

Our work differs from the CkNN query processing in the following aspects: 1)

CkNN query processing is for CkNN queries while our work aims at processing Basic

Graph Patterns (BGPs) on Linked Data; 2) the search algorithms are different as query

evaluation for CkNN queries and BGPs is different; 3) the indexing space is different

as CkNN query processing only considers 2D space but our work considers 3D space;

4) finally, our work can be extended to support more complex queries on Linked Data

broadcast in a wireless channel while CkNN query processing aims to handle variants

of NN queries.
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5.3 Air Indexing for Linked Data

5.3.1 Wireless Broadcast Model

In a wireless data broadcast system, generally there is a base station that pre-processes

data before it broadcasts the data on the wireless channel. If mobile clients have

registered an interest in some data on the server, they can listen to the wireless channel

and download the data. The wireless channel can be shared by all mobile clients. In

this way, the broadcast system could be able to serve an arbitrary number of mobile

clients simultaneously.

In order for clients to efficiently locate data of interest, air indexing techniques are

used to facilitate the searching of data on air. Air indexes are normally lightweight and

concise summaries of the data to be broadcast. Based on air indexes, mobile clients

within the communication range of the base station can evaluate their queries directly

and then locate requested data on the wireless channel. Since the wireless channel

is linear and data is broadcast in the form of packets, air indexes can be serialized

and separated into packets. In order to improve performance, the number of air index

packets required for evaluating a query should be minimized.

Similar to the existing work in data broadcast, we use access latency and tuning

time as the primary performance metrics [118]. Access latency refers to the time

elapsed between the moment when a query is formed and the client starts listening

to the server to the moment when all requested data has been received. Tuning time

refers to the period of time that a client has to stay active in order to complete a query.

During the tuning time, a client downloads the relevant index parts, queries against

the downloaded index, or downloads the matched data from the broadcast channel.

When the data on air is not of interest, a client can switch to sleep mode to save

power and wait for the requested data to be broadcast.
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5.3.2 Mapping between Triples and 3D Points

Existing light weight data summaries (e.g., [103, 117]) have been proven to be effec-

tive to index Linked Data. However, they are not suitable in a wireless broadcast sys-

tem. In order to develop a new index structure for broadcasting Linked Data, similar

to data summaries, we choose to use hash functions1 to map RDF triples into numer-

ical values. These numerical values can be regarded as coordinates in a 3D space.

Specifically, given a hash function f , a triple (s, p, o) can be mapped into a 3D

point ( f(s), f(p), f(o)). We call such a point mapped from a triple a data

point in order to differ it from other points in the 3D space. Using this approach, a set

of RDF triples can be mapped into a set of 3D data points.

Basic Graph Patterns (BGPs) [117] are adopted as queries in our system. Similar

to RDF triple mappings, a single BGP containing only one RDF triple pattern can

be mapped into a point, a line, or a plane in a 3D space, or even the whole 3D space,

depending on the number of variables in the triple pattern. The possible triple patterns

in a BGP are: 1) (#s, #p, #o), 2) (?s, #p, #o), 3) (#s, ?p, #o), 4)

(#s, #p, ?o), 5) (?s, ?p, #o), 6) (?s, #p, ?o), 7) (#s, ?p, ?o),

and 8) (?s, ?p, ?o). Here, ? denotes a variable while # denotes a constant.

Clearly, pattern 1 can be mapped into a 3D data point. Patterns 2 to 4 can be mapped

into lines in the 3D space and patterns 5 to 7 can be mapped into planes. It should

be noted that we do not consider pattern 8 in our work, as it will be mapped into the

whole 3D space and require a traversal of all the data points in the whole 3D space,

where air indexing is not required.

5.3.3 3D Hilbert Curve Index

A space-filling curve in d dimensions is a continuous, surjective mapping between

one-dimensional space and d-dimensional space. A Hilbert curve is an example of a

1There are many options of hash functions. For more details, please refer to [103, 117].
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space-filling curve. It generally has good locality properties [120] and can efficiently

support matching against BGPs with variables that can be mapped into lines or planes.

Hence, the Hilbert curve is adopted as the foundation of our indexing method.

Mapping 3D points to one-dimensional points: To simplify our discussion, we

use a 2D Hilbert curve to illustrate our ideas, which can then be generalized to 3D

Hilbert curves. Figure 5.1 shows 2D Hilbert curves for order 1 and 2, i.e., H1 and H2,

respectively. Note that, a k order Hilbert curve, denoted as Hk, passes all center points

of 2kd subdividing squares (or hypercubes) in a d-dimensional space. In Figure 5.1a,

each center point of a subdividing square in 2D space is assigned a Hilbert value,

which can be regarded as a one-dimensional point. Note that, the mapping between

center points and Hilbert values are bijective, which means for a given Hilbert curve,

we can freely convert between center points and Hilbert values in constant time.

From Figure 5.1b, we can see that high order Hilbert curves can be easily derived

using transformation from low order Hilbert curves similar to the one shown in Figure

5.1b. In order to derive H2 from H1, in Figure 5.1b, the 2D space is divided into 2d

(d = 2 in this case) sub-regions, where each sub-region contains an H1. After rotating

the lower two H1 curves, an H2 Hilbert curve is derived (see Figure 5.1c). Since H1

has 22 subdividing squares, H2 has totally 22×2 subdividing squares.
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Figure 5.2 presents an example of a 3D Hilbert curve of order 1. Higher order

3D Hilbert curves can be derived using a similar process described above. In order

to accommodate a larger 3D data space, i.e., the hashing space for RDF triples, we

need to utilize higher order 3D Hilbert curves. We can easily check that a k order 3D

Hilbert curve can have up to 23×k data points. In other words, when mapping to a k

order 3D Hilbert curve, all RDF triples will be mapped into at most 23×k data points

(also center points of hypercubes) in a 3D space.

Indexing one-dimensional points on air: After mapping 3D points into one-dimensional

points using 3D Hilbert curves, we can utilize B+-trees to index one-dimensional

points on a 3D Hilbert curve. An example is depicted in Figure 5.3. Each one-

dimensional point in the leaf nodes contains a pointer to a real triple that will be

broadcast on the wireless channel. Such B+-trees can be serialized and broadcast on

the linear wireless channel as air indexes for the Linked Data on air in the form of

data packets. We adjust the fan-out of a B+-tree according to the packet capacity of

the wireless channel so that a complete node of a B+-tree can fit in a packet. After

downloading a part (e.g., a few packets) of an air index, mobile clients can then eval-

uate their queries (i.e., BGPs) against the partial index, determine which remaining

index packets should be further retrieved, and finally compute the broadcast time of

matched triples after all necessary index information has been acquired.

Evaluating queries against an air index: In the query evaluation process, one chal-

lenging issue is how to match a one-dimensional point against BGPs. As mentioned

previously, BGPs could be mapped into a point, a line or a plane in a 3D space. A

naive solution to this would be to map BGPs to points on Hilbert curves as well.

However, there will be too many points that fall into a line or a plane and require such

mapping. Hence, for those BGPs with variables, it may require significant computing

effort to map such BGPs into points on Hilbert curves. Because of this, we propose to

map BGPs into a 3D space directly. In order to match BGPs with data points in the 3D
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space, we need to transform one-dimensional points in B+-tree based air indexes into

3D points. We then examine whether such 3D points fall into the subspace defined by

a BGP. If yes, RDF triples pointed to by these points match the BGP. Otherwise, they

do not match.

Query evaluation example: We give an example of the query evaluation process in

the following. Suppose a triple (a, b, c) can be hashed as (112, 31, 92) in

a 3D space and its Hilbert value is 1137. Also suppose a mobile client issues a BGP

(a, b, ?o). This BGP can be converted into a 3D line (112, 31, ?). After

receiving Hilbert value 1137 from the air index, the mobile client firstly converts it

back into a 3D point (112, 31, 92) and then it finds that this point falls on the

3D line defined by its BGP. Then the client knows the triple pointed to by Hilbert

value 1137 is of its interest. As mentioned earlier, the conversion between a Hilbert

value and a 3D point can be calculated in constant time given a Hilbert curve of order

k (here, k is a constant).

Reducing search space: One issue needs to be addressed in the above query evalu-

ation process: how to reduce the search space of Hilbert values indexed by B+-trees,

thereby leading to fewer index packets required to download for a query evaluation.

Given an air index like the one shown in Figure 5.3, the root node has three child

nodes. Based on the Hilbert values in the root node, we need to determine which

child node would contain triples that may match a given BGP. We observe that each

child node contains multiple Hilbert values and the range of these values can be easily

computed from the root node. For example, the value ranges of the three child nodes

are [0,8), [8,12) and [12,hmax] (here hmax refers to the maximum Hilbert value of a

Hilbert curve). For each value range, we have two bounding Hilbert values.

To reduce the search space, we compute the minimal sub-region defined by a

lower order Hilbert curve that covers the range defined by both bounding Hilbert

values (see Figure 5.4, where two dash lines represent two BGPs). If such minimal
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sub-region intersects with sub-space (i.e., a line) defined by a BGP, the child node

with the value range may contain triples that match that BGP. Otherwise, no triples

in the child node will match that BGP. The example shown in Figure 5.4 illustrates

a minimal sub-region for the value range [8,12). We can see that two BGPs that are

represented as two dash lines have no intersections with it. So we can infer that no

triples pointed to by the second child node (triples whose Hilbert values are 8, 9, and

11) in Figure 5.3 will match the two BGPs shown as two dash lines in Figure 5.4.

It is reasonable that the mobile clients would not want to download too much data

as energy is limited. In such case, the mobile clients can firstly download the index

on air only and then evaluate their queries on the index. Such evaluation will provide

them with an idea on how much data they need to download. If they find out that their

queries will match too much data, they can revise their queries to reduce the amount

of data for downloading.
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5.4 Experiments

5.4.1 Experimental Setup

The data set used in our experiment is a subset of the current version of the English

DBpedia2. It contains resources of type dbpedia-owl:Event. Each event is a

triple of the form <eventURI, rdf:type, dbpedia-owl:Event>. An ex-

ample of an event URI is <http://dbpedia.org/resource/Battle_of_Brentford_(1642)>.

There are approximately 400,100 triples in the dataset. We used data from DBpedia

in our experiment because DBpedia is one of the free and public datasets. DBpedia

also provides information that attracts public interest, which well fits the motivation

of this work.

As an initial work, we used simple BGPs as queries in the experiment and we

leave extending our system to support complex BGPs or join queries as our future

work. We randomly generated BGPs using the seven patterns mentioned in Section

5.3 based on our dataset. We generated 100,000 queries and reported the average

experimental results.

2http://downloads.dbpedia.org/3.8/en/

http://dbpedia.org/resource/Battle_of_Brentford_(1642)
http://downloads.dbpedia.org/3.8/en/
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R-tree [110] often requires to maintain a queue to keep track of overlapped regions

during the query evaluation which may require considerable memory consumption.

Hence we broadcast R-tree indexes in a depth-first order to avoid that issue. We

broadcast B+-tree HC (Hilbert Curve) indexes in a breadth-first order to facilitate the

continuous access to linked leaf nodes.

We compared our B+-tree HC (Hilbert Curve) indexes with traditional R-tree in-

dexes which can be used to index 3D points directly. In the experiment, we varied the

packet capacity of the wireless broadcast channel from 128 bytes to 2048 bytes. For

each packet capacity setting, we assigned appropriate fan out and leaf order parame-

ters for R-trees and B+-trees to ensure that each packet was able to accommodate a

complete node of a tree.

We evaluated the performance of our method using metrics of access latency, tun-

ing time, and index size. Given a fixed bandwidth of the wireless channel, the access

latency depends on the number of packets that have been broadcast during the clients’

waiting time, and the tuning time depends on the number of packets that have been

downloaded by clients. Hence, for simplicity, we measured the access latency and

tuning time with the number of packets (denoted as # Packets).

5.4.2 Performance Analysis

Figure 5.5 shows the results of average access latency and tuning time under different

packet capacities. From Figure 5.5a, we can see that the access latency for our Hilbert

Curve (HC) based method is slightly better than the R-tree based method. The rea-

son is that the index size is much smaller than the content (Linked Data stream) on

air and hence the dominant factor of access latency is the content but not the index.

Nevertheless, the size of HC based index is smaller (see also Figure 5.6b) than R-tree

based method, resulting in lower access latency.
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Fig. 5.5 Access Latency and Tuning Time

Figure 5.5b shows the comparisons of the tuning time. From the figure, we can

clearly identify that HC based index outperforms R-tree based index. The reason

for this is two-fold: firstly, by using our novel search algorithm, the searching space
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Fig. 5.6 Index Tuning Time and Index Size

of the HC based index is smaller than the R-tree based index; secondly, the size of

each index entry for the HC based index is smaller than the R-tree based index. This

result confirms the effectiveness and efficiency of our search algorithm and HC based

indexing technique.
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The percentage of index tuning time is presented in Figure 5.6a. Here, we define

the percentage of index tuning time as the ratio between the index tuning time (caused

by downloading necessary parts of the index on air) and the total tuning time (the sum

of index tuning time and content tuning time). This metric is a good indicator for the

effectiveness and efficiency of an index. The lower percentage we get, the better

effectiveness we can achieve. Figure 5.6a shows that the HC-based index has a much

lower percentage of index tuning time when compared with the R-tree based index.

To be specific, the percentage of index tuning time of the HC-based index is below

20% under different packet capacities while that of the R-tree based index is above

60%.

The index sizes are compared in Figure 5.6b. We can see that the number of

packets required to accommodate the whole index for HC based index is only about

half of that for R-tree based index. The main reason is that R-tree index has to store

3D points in its nodes while the HC based index only stores one-dimensional points.

5.5 Summary

In this chapter, we have proposed an effective and efficient air indexing method for

broadcasting Linked Data on air, which can be used in data sharing among a large

number of mobile and smart objects in the era of Internet of Things. Our method

is based on 3D Hilbert curve mappings. Firstly we map RDF triples into points in

a 3D space and then adopt 3D Hilbert curve mappings to convert all the 3D points

into one-dimensional points. We build B+-trees upon these one-dimensional points

and serialize these trees in order to accommodate them on the linear wireless channels.

An efficient search algorithm has also been devised to facilitate query processing over

the Linked Data on air. We have conducted experiments and compared our method

with the traditional R-tree based spatial indexing method. Our method has shown
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better performance over the R-tree based method in various aspects, including access

latency, tuning time, and index size.





Chapter 6

Data Sharing in IoT Environments

Part II

XML has become prevalent in today’s ubiquitous and mobile computing devices and

applications. To integrate all these mobile computing devices and applications as a

significant part of the IoT big family, it is imperative to incorporate XML data tech-

niques in IoT to enable efficient and effective data exchanging and sharing among

things that speak and understand the XML language. This chapter studies the data

placement problem of periodic XML data broadcast in mobile and wireless environ-

ments. Taking advantage of the structured characteristics of XML data, effective

broadcast programs can be generated based on the XML data on the server only. An

XML data broadcast system is developed and a theoretical analysis on the XML data

placement on a wireless channel is also presented, which forms the basis of the novel

data placement algorithm in this chapter. The proposed algorithm is validated through

a set of experiments. The results show that the proposed algorithm can effectively

place XML data on air and significantly improve the overall access efficiency. The

research presented in this chapter was initially published in [123].
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6.1 Overview

Wireless technologies have become deeply embedded in our daily lives [124]. At

the end of 2011, there were 6 billion mobile subscriptions, estimated by the Inter-

national Telecommunication Union (2011). That is equivalent to 87 percent of the

world population, and is a huge increase from 5.4 billion in 2010 and 4.7 billion

mobile subscriptions in 2009.

Broadcast is one of the basic ways of information access via wireless technolo-

gies. In a wireless data broadcast system, the server broadcasts public information

to all mobile devices within its transmission range via a downlink broadcast chan-

nel. Mobile clients “listen" to the downlink channel and access information of their

interest directly when the desired information arrives. Broadcast is bandwidth effi-

cient because all mobile clients can share the same downlink channel and retrieve

data from it simultaneously. Broadcast is also energy efficient at the clients because

downloading data costs much less energy than sending data [125].

Wireless data broadcast services have been available as commercial products for

many years (e.g., StarBand and Hughes Network). Recently, there has been a push for

such systems from industry and various standard bodies. For example, born out of the

ITU “IMT-2000” initiative, the Third Generation Partnership Project 2 is developing

Broadcast and Multicast Service in CDMA2000 Wireless IP network. Systems for

Digital Audio Broadcast (DAB) and Digital Video Broadcast (DVB) are capable of

delivering wireless data services. Recent news also reported that SiriusXM Satellite

Radio (www.siriusxm.com) and Raytheon have jointly built a communication system,

known as the Mobile Enhanced Situational Awareness Network (MESA), that would

use SiriusXM satellites to relay information to soldiers and emergency responders

during a homeland security crisis.

On the other hand, information expressed in semi-structured formats is widespread

over the past years. XML has rapidly gained popularity as a de facto standard to rep-
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resent semi-structured information. Popular Web browsers provide support for XML

and nearly all major IT companies (e.g., Microsoft, Oracle, and IBM) have integrated

XML into their software products. Delivering information in XML format is also

popular in Web services and in various kinds of Publish/Subscribe systems.

Combining both trends of the proliferation of mobile computing technologies and

XML data, broadcasting information in XML format in a wireless environment would

be a preferable way of information delivering and sharing. Consequently, the research

of XML data broadcast is of great importance and in fact it has been attracting more

and more research interests [126–133]. To further demonstrate the practicability of

XML data broadcasts, we will present a potential application by detailing a real life

scenario in Section 6.3.

There are two typical data broadcast modes: (i) Periodic Broadcast Mode and (ii)

On-Demand Broadcast Mode [125]. In the periodic broadcast mode, data is period-

ically broadcasted on a downlink channel via which the server sends data to clients.

Clients only need to “listen" to that channel and download the data that they are in-

terested in. In contrast, for the on-demand broadcast mode, clients send their queries

to the server via an uplink channel and the server considers all submitted requests

and decides the content of the next broadcast cycle. In this work, we focus on the

periodic broadcast mode since it has many benefits such as saving uplink bandwidth,

reducing power consumption at the clients and effectively delivering information to

an unlimited number of clients simultaneously.

Data placement algorithms determine what data items to be broadcasted by the

server and their order on wireless channels, aiming to reduce average waiting time for

mobile clients. To a large extent, the data placement problem of XML data is similar

to that in multi-item contexts [134, 135] where mobile clients may request multiple

items each time. However, there are some drawbacks of existing data placement

approaches in the traditional data broadcast models.
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Firstly, the previous work on multi-item placement problems generally assumes

that the clients’ queries are known in advance [136, 137, 134, 135]. For example,

the clients can provide a profile of their interests to the servers [136, 137]. However,

such models may limit the practicability of the proposed placement algorithms in real

situations because: (i) new mobile clients may join in the network at anytime; and

(ii) mobile users may be reluctant to disclose their queries to the server via an uplink

channel due to expensive communication cost and privacy concerns. Secondly, in

the traditional data broadcast systems, an appropriate placement can hardly be gener-

ated based only on information of data items themselves on the server. Hence, user

queries must be known in advance for the design of data placement algorithms. Alter-

natively, some work applies data mining techniques to discover association rules from

the history access patterns of a set of data [138]. This avoids the need to obtain ac-

cess patterns of mobile clients on-the-fly. However, the availability of such historical

access patterns of mobile clients is a necessity, which may not always be available.

In contrast, in XML data broadcast, data items (or XML documents) usually share

parts of their structure. Taking structural sharing between XML documents into con-

sideration, we are able to analyze and estimate clients’ access patterns. Then we can

effectively place XML data on wireless channels based only on the XML data on the

server, which is important for practical usage. To the best of our knowledge, little

work has addressed similar data placement strategies in the context of wireless data

broadcast. Therefore, in this chapter, we study the data placement problem of periodic

XML data broadcast. Firstly, we overview an XML broadcast system and present a

theoretical analysis on the data placement problem of periodic XML data broadcasts.

Secondly, based on the analysis, we design a novel greedy data placement algorithm.

The main contributions of this chapter are summarized as follows:
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• In the context of periodic XML data broadcasts, by taking advantage of the

structural characteristics of XML data, we are able to generate appropriate data

placement results based only on the XML data on the server.

• We perform a theoretical analysis on the data placement problem of periodic

XML data broadcasts. Based on the analysis, a novel greedy data placement

algorithm which organizes XML data on air is presented.

• Extensive experiments are conducted to show the effectiveness of our proposed

data placement algorithm.

The remainder of this chapter is organized as follows. Section 6.2 describes some

background information of this work, including an application scenario, the wireless

broadcast system and the concept of XML structural sharing. Then a theoretical anal-

ysis of the data placement problem is presented in Section 6.3. Section 6.4 discusses

the structural sharing property of XML data and then proposes a novel greedy data

placement algorithm. Section 6.5 presents our experimental study for evaluating the

performance of the proposed data placement algorithm. Finally, Section 6.6 discusses

the related work and Section 6.7 gives some concluding remarks.

6.2 Background

In this section, we first describe a potential application scenario. Then we show an

overview of the broadcast system used in this work and introduce background knowl-

edge of XML structural sharing.

6.2.1 Application Scenario

We use the following scenario to show potential applications of XML data broadcast

in real life.
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Consider a live basketball game. Information about the game and the players on

the court is usually the interest of a large audience. When the game progresses, the

volume of such information is expected to increase, which means the information

content is dynamic. Normally, a basketball stadium can accommodate 10, 000 to 60,

000 audience at the same time. The audience is likely to be interested in similar game

information. They may even want to access the game information at the same time

(suppose most of them are with mobile devices). In this context, data broadcast is a

preferable way of delivering latest information to the audience. Then thousands of au-

dience in the stadium can access game information simultaneously by just “listening"

to the broadcast channel. The audience does not need to contend limited bandwidth

(i.e., the use of the uplink channel) and other system resources (i.e. the server pro-

cessing capacity) with each other.

In this scenario, we assume that (1) the audience is not only interested in the real-

time information about the basketball game, but also interested in some historical

records/statistics information about the players, the basketball teams or the coach

teams, etc; (2) the audience may want more statistics information about the current

basketball game than the limited live statistics information shown on the large screens

inside the stadium. Therefore, a broadcast service would be very helpful for the

audience to obtain more desired information about the game.

Meanwhile, audience could be outside of the stadium, such as basketball fans

who are watching live text information about the game via the Internet at their homes.

Therefore, the game information could also be delivered via the Internet to online

audience and other Web service providers who have subscribed this basketball game.

Using XML format to represent game information can satisfy all these needs and

realize simplicity, generality, and usability of game information at the same time.

Apart from broadcasting to people, broadcasting to smart objects in the Internet

of Things is also important in enabling information sharing among smart objects.

Specially in the Smart City environments, smart objects in the same region of a city
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might be interested in similar information related to the region they are currently in.

In such situation, broadcasting is a preferable way to disseminate information to these

smart objects.

6.2.2 A Wireless XML Data Broadcast System

Figure 6.1 shows a wireless XML data broadcast system. The system includes an

XML Data Center (the broadcast server), a broadcast program scheduler, broadcast

listeners (mobile clients) and a downlink channel (the server broadcasts information

to mobile clients via it). If mobile clients are interested in some data on the server,

they can listen to the downlink channel and download data that they need. Note that,

downloading the data from the downlink channel does not mean each mobile client

would need to set up a different downlink connection. All mobile clients only need

to tune in the downlink channel and listen to it for the desired information. Thus this

downlink channel can be shared by all mobile clients. Mobile clients cannot send

their individual queries to the server in this model as no uplink channel is available.

There are several notable advantages of such a system model. Firstly, it can serve

an arbitrary large number of mobile clients simultaneously. Secondly, extra energy

cost at the client side for using an uplink channel can be avoided. Further, after

applying air indexing techniques [139, 129], mobile clients will also be able download

an air index and determine when the desired data will be broadcasted on the wireless

channel (for more details about air indexing, please refer to Section 6.4.3). Before

the desired data is available, they can switch to energy saving mode to reduce power

consumption. As a result, the battery life of mobile clients can be extended.

From the figure, we can see that the XML Data Center could be connected to

the Internet and deliver information to online users, Web service providers and Pub-

lish/Subscribe systems, etc. With the use of XML data, these different applications
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Fig. 6.1 A wireless XML data broadcast system

can be integrated seamlessly with our wireless data broadcast system for the purpose

of sharing and delivering the same information to different users.

6.2.3 XML Structural Sharing

Our goal is to place XML documents on the broadcast channel based on the infor-

mation at the server side. We propose to explore structural sharing between differ-
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Fig. 6.2 An XML structure tree

ent XML documents and place documents according to the structural sharing results.

Here, structural sharing refers to overlaps of path sets (defined in the below) of XML

documents.

Some existing work on measuring structural sharing between XML documents

can be found in [140, 141]. The main idea of their work is based on the concept of

path sets. Here, a path set of an XML document contains all full paths (paths that

are from the root element to the leaves) and their subpaths. A simple example is

depicted in Fig. 6.2. The path set of this example is: {/player/name, /player/position,

/player/nationality, /player/college, /player, /name, /position, /nationality, /college}.

We denote a path set of an XML document d as PS(d).

Different types of metric can be adopted, such as Jaccard metric [142, 143], Dice’s

coefficient [144] and Lian’s metric [145], to measure the structural sharing or similar-

ity between two XML documents di and d j. The exact forms of these metrics based on

PS are as follows (Jaccard metric is denoted as J(di,d j), Dice’s coefficient is denoted

as D(di,d j) and Lian’s metric is denoted as L(di,d j)):

J(di,d j) =
|PS(di)

⋂

PS(d j)|
|PS(di)

⋃

PS(d j)|
(6.1)
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D(di,d j) =
2 · |PS(di)

⋂

PS(d j)|
|PS(di)|+ |PS(d j)|

(6.2)

L(di,d j) =
|PS(di)

⋂

PS(d j)|
max{|PS(di)|, |PS(d j)|}

(6.3)

From the above definitions, we can see that both Jaccard metric and Dice’s coeffi-

cient give more weight to the total structural information of two comparing documents

while Lian’s metric emphasizes on the difference of these documents. All three met-

rics can vary in the interval [0,1]. If PS(di) = PS(d j), we have J(di,d j) = D(di,d j) =

L(di,d j) = 1. Clearly, the larger the values of these metrics are, the more structural

sharing the two comparing XML documents have.

6.3 Analysis of the Data Placement Problem

In this section, we present a theoretical analysis on the data placement problem in

periodic XML data broadcasts.

In the literature, two critical metrics, namely access time and tuning time, are used

to measure a system’s performance [146]. Access time1 refers to the time elapsed

from the moment a query is issued to the moment it is answered, while tuning time

refers to the time a mobile client stays in active mode to receive the requested XML

documents and the index information. Data placement mainly affects access time

because tuning time depends on the total content downloaded by mobile clients but

not on the order of data. Hence, we use access time as our metric in this analysis.

In periodic broadcast, queries are used to describe the interests of mobile clients and

1Note that, in [139], Access latency is also used for Access time, which can be considered the same
concept.
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Table 6.1 Symbols Overview

Symbol Description

D XML document set. {d1,d2,d3, . . . ,dn}.
q query issued by a mobile client.

k number of documents required by q.

σ a complete broadcast program (or broadcast sequence). It is
the result of a data placement algorithm running on a given D .
< d1,d2,d3, . . . ,dn >. (Note: It is different from D as D is a
set but not a sequence.)

gap unmatched documents of q that are placed between two adja-
cent matched documents in σ .

L the length of documents.

AT
q
exp the expected access time of q.

help mobile clients to skip irrelevant data on air, but they are not actually submitted

to the broadcast server.

Table 6.1 lists the symbols used in the rest of the chapter and Fig. 6.3 shows

a broadcast program (or a broadcast sequence) σ on the wireless channel which is

broadcasted periodically. The broadcast program σ can start from any XML docu-

ment di. However, we assume that σ starts from d1 (this will then comply with the

definition of σ in Table 6.1) to simplify our analysis.

With the basic assumption that queries can be issued at any time with an equal

probability (this means the issue time of queries follows a uniform distribution), we

can calculate the expected access time of q, denoted as AT
q
exp, in the following:

AT
q
exp =

k

∑
i=1

(
Ldni

Lσ
·Lσ +

Lgapi

Lσ
· (Lσ −

1
2
·Lgapi

))

=
k

∑
i=1

Ldni
+

k

∑
i=1

Lgapi
− 1

Lσ
·

k

∑
i=1

1
2
·L 2

gapi

= Lσ −
1

2 ·Lσ
·

k

∑
i=1

L
2

gapi
(6.4)
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Fig. 6.3 A broadcast program showing positions of documents required by query q

In this equation, Ldni
refers to the length of document dni

, Lσ refers to the total

length of all documents in σ and Lgapi
refers to the total length of all documents in

gapi.

According to Equation (6.4)2 and a given broadcast program σ , we can calculate

AT
q
exp simply according to the gaps between consecutive documents required by q.

Further, from the above equation, we can see that in order to improve the expected

access efficiency, ∑k
i=1 L 2

gapi
should be as large as possible.

Moreover, the sum of all gaps, denoted as Lgaps, can be computed as

Lgaps =
k

∑
i=1

Lgapi
= Lσ −

k

∑
i=1

Ldni
= Lσ −Lσq

(6.5)

2This result is exactly the same as [147] although the deduction process is different. The further
analysis on this result in the following is new.
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Here, Lσq
refers to the total length of all documents required by q, which is

∑k
i=1 Ldni

. Note that Lσq
is independent of any data placement results. In other

words, Lσq
is fixed for a given q, which in turn indicates that Lgaps is fixed.

In order to derive the lower and upper bounds of ∑k
i=1 L 2

gapi
and to analyze our

data placement strategy, we first present the following propositions for the below

function f (X).

Function f (X) = x1
2 + x2

2 + . . .+ xk
2 is with the following constraints:

1. x1 + x2 + . . .+ xk = M

2. x1,x2, . . . ,xk ≥ 0

where M > 0. We also denote the lower bound and the upper bound of f (X) as

f (X) and f (X) respectively.

Proposition 1 Given f (X) defined as above, we must have

f (X)≤M2

When x1 = x2 = . . . = xk−1 = 0 and xk = M (or any other kind of combinations like

this), f (X) reaches its upper bound, i.e., f (X) = M2.

Proof: According to the two constraints of function f (X), we have

f (X) = (x1 + x2 + . . .+ xn)
2−2 ·∑

i 6= j

xi · x j

≤ M2

When x1 = x2 = . . . = xk−1 = 0 and xk = M (or any other kind of combinations

like this, which means we have only one positive variable3.), f (X) reaches its upper

bound f (X) = M2. In all other cases, if two or more variables are positive, i.e. x1 > 0

and x2 > 0, we have 2 ·∑i 6= j xi · x j ≥ 2 · (x1 · x2)> 0 which indicates f (X)< M2. �

3Note that we cannot have all variables set to be 0 since M is positive.
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Proposition 2 Given f (X) defined as above, we must have

f (X)≥ k · (M

k
)2

When x1 = x2 = . . .+ xk =
M
k

, f (X) reaches its lower bound, i.e., f (X) = k · (M
k
)2.

Proof: We utilize mathematical induction to prove it (for all k ≥ 1).

For the base step, when k = 1, f (X) = x2
1, it is trivial to prove that f (X) = M2 ≥

1 · (M
1 )

2 and f (X) = M2 since x1 = M = M
1 .

For the inductive step, we assume that when k = n, f (X) ≥ n · (M
n
)2 and when

x1 = x2 = . . . = xn = M
n

, f (X) reaches its lower bound f (X) = n · (M
n
)2. Then for

k = n+1, we have

f (X) =
n

∑
i=1

x2
i + x2

n+1

≥ n · (M− xn+1

n
)2 + x2

n+1

=
(n+1) · x2

n+1−2 ·M · xn+1 +M2

n

=
(n+1) · (xn+1− M

n+1)
2 + n·M2

n+1

n

≥ (n+1) · ( M

n+1
)2

From the above induction, we can see that when xn+1 =
M

n+1 and x1 = x2 = . . .=

xn =
M−xn+1

n
= M

n+1 , f (X) reaches its lower bound f (X) = (n+1) · ( M
n+1)

2.

Because we have shown both the base step and the inductive step, by the principle

of mathematical induction the proposition is true. �

Moreover, given f (X) defined as above and suppose that m variables, i.e. x1,x2, . . . ,xm,

have been determined (m < k) while the rest k−m variables are not. We denote

M′ = M−∑m
i=1 xi. Now we are going to determine the next variable. Without loss of

generality, we use xm+1 as our next variable to be determined and aim to maximize or

minimize f (X). We denote f (X)xm+1 as the function with m+1 determined variables
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(xi, 1 ≤ i ≤ m+1) and k−m−1 undetermined variables. Then given two values of

this variable, i.e. xm+1 and x′m+1 and suppose xm+1 < x′m+1, we have the following

propositions:

Proposition 3 For f (X)xm+1
and f (X)x′m+1

, we have























f (X)xm+1
> f (X)x′m+1

xm+1 < x′m+1 ≤ M′
2

f (X)xm+1
< f (X)x′

m+1

M′
2 ≤ xm+1 < x′m+1

Inde f inite Otherwise

Proof: According to our definitions of f (X)xm+1 , we have

f (X)xm+1 =
m

∑
i=1

x2
i + x2

m+1 +
k

∑
i=m+2

x2
i

Since M′ = M−∑m
i=1 xi = ∑k

i=m+1 xi, according to Proposition 1, we have

f (X)xm+1
=

m

∑
i=1

x2
i + x2

m+1 +(M′− xm+1)
2

=
m

∑
i=1

x2
i +2 · x2

m+1−2 ·M′ · x2
m+1 +M′2

=
m

∑
i=1

x2
i +2 · (xm+1−

M′

2
)2 +

M′2

2

According to the above result, for any xm+1 < x′m+1 we can infer that

1. f (X)xm+1
> f (X)x′m+1

, if xm+1 < x′m+1 ≤ M′
2

2. f (X)xm+1
< f (X)x′m+1

, if M′
2 ≤ xm+1 < x′m+1

3. Indefinite for all other cases

�
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Proposition 4 For f (X)
xm+1

and f (X)
x′m+1

, we have























f (X)
xm+1

> f (X)
x′m+1

xm+1 < x′m+1 ≤ M′
k−m

f (X)
xm+1

< f (X)
x′m+1

M′
k−m
≤ xm+1 < x′m+1

Inde f inite Otherwise

Proof: According to our definitions of f (X)xm+1 , we have

f (X)xm+1 =
m

∑
i=1

x2
i + x2

m+1 +
k

∑
i=m+2

x2
i

Since M′ = M−∑m
i=1 xi = ∑k

i=m+1 xi, according to Proposition 2, we have

f (X)
xm+1

=
m

∑
i=1

x2
i + x2

m+1 +

(k−m−1) · (M′− xm+1

k−m−1
)2

=
m

∑
i=1

x2
i +

(k−m)x2
m+1−2 ·M′ · xm+1 +M′2

k−m−1

=
m

∑
i=1

x2
i +

(k−m)(xm+1− M′
k−m

)2 + (k−m−1)M′2

k−m

k−m−1

According to the above result, for any xm+1 < x′m+1 we can infer that

1. f (X)
xm+1

> f (X)
x′m+1

, if xm+1 < x′m+1 ≤ M′
k−m

2. f (X)
xm+1

< f (X)
x′m+1

, if M′
k−m
≤ xm+1 < x′m+1

3. Indefinite for all other cases

�
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Now according to Proposition 1 and Proposition 2, we have

k · (Lgaps

k
)2 ≤

k

∑
i=1

L
2

gapi
≤L

2
gaps (6.6)

Then according to Equation (6.4), we have

Lσ −
L 2

gaps

2 ·Lσ
≤AT

q
exp ≤Lσ −

L 2
gaps

2 · k ·Lσ
(6.7)

From the above two inequalities, we can see that in order to improve the expected

access efficiency, ∑k
i=1 L 2

gapi
should be as large as possible. According to Proposition

1, when we have one of the gaps equals to Lgaps and all other gaps equal to 0, we can

achieve the best expected access efficiency. Thus, when all XML documents required

by q are placed together and broadcasted in sequence, AT
q
exp can be minimized.

Also, according to Equation (6.5), we can rewrite the above inequality to

Lσ −
(Lσ −Lσq

)2

2 ·Lσ
≤AT

q
exp ≤Lσ −

(Lσ −Lσq
)2

2 · k ·Lσ
(6.8)

Here Inequality (6.8) shows both the lower and upper bounds of AT
q
exp for q in

another form. It is worth mentioning that both bounds are independent of any data

placement results. Moreover, we can infer that when k increases, σq will include more

documents. Then Lσq
increases as well. However, the decrease of difference Lσ −

Lσq
leads to larger lower and upper bounds of AT

q
exp, which means the system’s

overall performance will degrade.
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The above analysis focuses on a single query. However, generalizing it to multi-

ple queries would be much more complicated, as determining an optimal broadcast

sequence for multiple multi-item queries is an NP-Complete problem [147].

When there are multiple queries to consider for a broadcast program, these queries

are not likely to require the same XML documents. In such cases, Proposition 1 and

Inequality (6.6), which minimizes expected access time for a single query, cannot

assist in finding an optimal solution for all queries.

However, from Inequalities (6.6) and (6.8) we learn that the upper and lower

bounds of f (X) should be as large as possible which can lead to larger probability

of having large results of f (X). This in turn enlarges the probability that we have

smaller AT
q
exp for q according to Inequality (6.6) and (6.8). Then, for multiple

queries, according to Proposition 3 and Proposition 4, we know that when xm+1 ≤ M′
2

and xm+1 ≤ M′
k−m

, we should decrease xm+1 to have larger f (X)xm+1
and f (X)

xm+1
. In

other words, if we progressively reduce each gap as much as possible, we would have

larger lower and upper bounds of ∑k
i=1 L 2

gapi
. In this way, we can reduce both the

lower and upper bounds of the overall expected access time with a higher probability.

For example, if we try to minimize ∑k
i=1 L 2

gapi
for each query in {q1,q2,q3}, for

the first step, we should place XML documents that are required by all three queries

together to form an initial broadcast program. In the second step, we should place

XML documents required by only two of the three queries together and append them

to the initial broadcast program. After that, we append XML documents required by

only one query to the broadcast program to form a final broadcast program. Hence,

we can construct a final broadcast program in a greedy style.

Now the problem becomes how we can determine which documents should be

placed together first as we cannot obtain queries in advance. Our solution will be

discussed in the next section.
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6.4 The Data Placement Algorithm

In this section, we introduce the data placement algorithm for periodic XML data

broadcasts, based on our theoretical analysis in the previous section. We first discuss

the structural sharing property of XML data, which is used to estimate the poten-

tial access patterns of mobile clients, i.e., the probability of accessing a small set of

similar XML documents simultaneously. Then we put forward a novel greedy data

placement algorithm based on it.

6.4.1 Structural Sharing in XML Data

Intuitively, for any two given XML documents, we can utilize one of the three struc-

tural similarity metrics described in Section 6.2.3 to calculate the similarity between

them and the similarity results can be used to approximate the probability that a spe-

cific query is matched with both documents at the same time. For example, if two

XML elements are under structurally similar paths, then it is more likely that that

either both elements satisfy, or none satisfies, a given query [140]. Therefore, if two

XML documents are with larger structural similarity, i.e. d1 and d2, then they would

have a higher probability to be required simultaneously. However, there are still three

other cases to be considered, such as requiring d1 but not d2, requiring d2 but not d1

and requiring neither of d1 and d2. Therefore, the above similarity metrics consider

only successful match probabilities of both XML documents and do not consider un-

successful match probabilities.

Nonetheless, unsuccessful match cases have effects on the expected access time

as well. According to Proposition 1 and Proposition 2, in order to have better access

efficiency, the gaps between any two required documents by a single query should be

as less uniform as possible. Based on this, we can infer that in the above example,

cases of required d1 but not d2 and required d2 but not d1 are likely to generate more

uniform gaps while other two cases (required both documents or neither) are likely
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to have less uniform gaps. Observing this, we define a new similarity metric called

Cohesion to give a more accurate estimation of access patterns of mobile clients in

the following.

Note that, for any query q requiring at least one of the documents in D , q must

match some paths in PS(D) and it has a probability of |PS(d)|
|PS(D)| of matching d. If a

query q fails to match any document in D , the issuer of q only needs to locate and

download an air index to confirm that his/her query does not match any document.

Then he/she can stop waiting for the result to be broadcasted. All these queries only

need to access the index information on air and therefore, their expected access time

depends heavily on the index distribution, which is not the focus of our work. To

estimate their expected access time, interested readers are referred to [139] for more

details. Hence, we only consider successful queries in this work.

Now suppose we have a set of n XML documents D = {d1,d2, . . . ,dn} on the

server, we can approximate the access probability of any document d for queries

which successfully match at least one document in the set D as follows:

Pr(d) =
|PS(d)|
|PS(D)| (6.9)

and for any i, j (1≤ i, j ≤ n)

Pr(di−d j) =
|PS(di)−PS(d j)|
|PS(D)| (6.10)

Here, PS(D) =
⋃n

i=1 PS(di).

There would be many different matching cases for a given set D . Take two XML

documents d1 and d2 in D as an example. As mentioned previously, there would be

four cases of matching of them and the probability of each case is shown in Table 6.2.
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Table 6.2 Matching Cases for Document d1 and d2 in a Document Set D

Case Probability Effect on ATexp

Matched both d1,d2 Pr(d1
⋂

d2) Positive

Matched none of d1,d2 1−Pr(d1
⋃

d2) Positive

Matched d1, but not d2 Pr(d1−d2) Negative

Matched d2, but not d1 Pr(d2−d1) Negative

In this table, we also include positive and negative effects on the expected access time

(ATexp) for each case.

Based on Table 6.2 and the previous analysis, we can see that, given two docu-

ments, if both documents are matched against the same query or neither of the docu-

ments is matched, the two documents will tend to be more similar to each other, i.e.,

Pr(d1
⋂

d2) or 1−Pr(d1
⋃

d2) is higher. On the other hand, if only one of the two

documents is matched against a given query, the similarity between them tends to be

smaller, i.e., 1/Pr(d1− d2) or 1/Pr(d2− d1) is smaller. Based on this observation,

we define Cohesion C(di,d j) of XML documents di and d j as follows:

C(di,d j) =
Pr(di

⋂

d j) · (1−Pr(di

⋃

d j))

max{Pr(di−d j),Pr(d j−di)}
(6.11)

Here di and d j are both in set D . It is easy to see that C(di,d j) = C(d j,di). Ac-

cording to Equation (6.9), Equation (6.10) and Equation (6.11), we can calculate

C(di,d j) after finding path sets of di, d j in D . Cohesion values can vary in a wide

range which exceeds interval [0,1]. Strictly speaking, Cohesion values only vary in

interval [0, |PS(D)|
4 ] given that C(di,d j) =

|PS(D)|
4 when PS(di) = PS(d j). The lower

bound 0 is trivial. In order to obtain the upper bound, we only consider cases that have

PS(di) 6= PS(d j), from which we can infer that max{|PS(di−d j)|, |PS(d j−di)|} ≥ 1.

Without loss of generality, let |PS(di)| ≥ |PS(d j)|, according to Equation (6.9) and

Equation (6.10), we can rewrite Equation (6.11) as follows:
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Algorithm 3 Initialize structural sharing matrix S[n][n]

Input: A set of XML documents D : {d1,d2, ...,dn}
Output: Structural sharing matrix S[n][n]

1. create matrix S[n][n]
2. for each document d in D do

3. compute PS(d)
4. end for

5. for each pair of documents < di,d j > in D (i < j) do

6. S[i][ j]⇐ structural sharing between di and d j

7. S[ j][i]⇐ S[i][ j]
8. end for

C(di,d j) ≤
|PS(di

⋂

d j)|
|PS(D)| · (1−

|PS(di
⋃

d j)|
|PS(D)| )

1
|PS(D)|

<
|PS(di)| · (|PS(D)|− |PS(di)|)

|PS(D)|

=
−(|PS(di)|− |PS(D)|

2 )2 +
|PS(D)|2

4

|PS(D)|

≤ |PS(D)|
4

Then the above result gives the upper bound of Cohesion C(di,d j). Now we can

normalize Cohesion values to interval [0,1] in the following

C′(di,d j) =











4·C(di,d j)
|PS(D)| PS(di) 6= PS(d j)

1 PS(di) = PS(d j)
(6.12)

We can also infer that C′(di,d j) = 1 if and only if PS(di) = PS(d j). Similar to the

other three similarity metrics, the larger the value of Cohesion is, the more structural

sharing the two comparing XML documents have.
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Algorithm 4 GDPA

Input: Structural sharing matrix S[n][n]
Output: A broadcast program σ for D

1. σ ⇐ empty sequence
2. select a pair of documents < di,d j > with maximum value S[i][ j] in matrix S[n][n]

3. if Ldi
<= Ld j

then

4. add < di,d j > into σ
5. else

6. add < d j,di > into σ
7. end if

8. D ′⇐D−di−d j

9. while D ′ is not empty do

10. dhead ⇐ the first document in σ
11. select a pair of documents < dimax

,dhead > with maximum value S[imax][head]
(dimax

∈D ′)
12. drear⇐ the last document in σ
13. select a pair of documents < d jmax

,drear > with maximum value S[ jmax][rear]
(d jmax

∈D ′)
14. if S[imax][head]>= S[ jmax][rear] then

15. append dimax
into σ from head

16. D ′⇐D ′−dimax

17. else

18. append d jmax
into σ from rear

19. D ′⇐D ′−d jmax

20. end if

21. end while

6.4.2 The Greedy Data Placement Algorithm

Based on the discussions of structural sharing between XML documents, we can gen-

erate a broadcast program for periodic data broadcasts in a greedy way. From previ-

ous discussions, we can see that if more structural sharing of two XML documents is

observed, we will have a larger probability of matching both XML documents simul-

taneously. As a result, our Greedy Data Placement Algorithm (GDPA) places XML

documents with most structural sharing together first as an initial broadcast program.

Then it progressively appends other XML documents to the broadcast program in a

descending order of structural sharing. Detailed steps of GDPA are shown in Algo-

rithm 3 and Algorithm 4.



152 Data Sharing in IoT Environments Part II

Algorithm 3 initializes a structural sharing matrix S[n][n] for n XML documents

on the broadcast server. Note that, all four similarity metrics defined in Section 6.2.3

and 6.4.1 can be used in Algorithm 3 to compute structural sharing between two doc-

uments (Line 6). All of them are symmetric which means for any one of these met-

rics, we must have S[ j][i] = S[i][ j]. Also we have J(di,d j) = D(di,d j) = L(di,d j) =

C′(di,d j) = 1 if i = j. Therefore, we only need to calculate matrix S for entries S[i][ j]

where i < j.

Based on matrix S, Algorithm 4 finds the pair of XML documents with maximum

structural sharing value and adds them into the initial empty broadcast program σ

(Line 2). As discussed in Section 6.3, the expected access time is determined by the

gaps between the required documents but not by the sequence of them. Therefore, the

sequence of the first pair of XML documents can be simply placed on the broadcast

channel according to the ascending order of document lengths (Line 3 to 7). Next,

Algorithm 4 identifies the XML document (called d) with the maximum structural

sharing to the head document dhead or the rear document drear of σ . If the maximum

structural sharing is obtained between document d and document dhead , d will be

appended into σ from head; otherwise, d will be appended into σ from rear. This

process will be repeated until all XML documents are placed into σ in order (Line 9

to 21).

Time Complexity. Suppose there are n documents in total on the server and

each document contains p elements (or in other words, p paths) on average. Then in

Algorithm 3, the for loop from Line 2 to Line 4 takes O(np log p) time (we propose

the use of sorted sets here in order to speed up the set operations in the following

lines). Note that intersections or differences between two sorted sets take linear time,

which means Line 6 in Algorithm 3 takes O(p) time. Therefore, the for loop from

Line 5 to Line 8 takes O(n2p) time since there are O(n2) pairs of documents. Finally,

in Algorithm 4, Line 2 takes O(n2) times and the while loop from Line 9 to Line 21
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takes O(n2) time as well. Putting all the times together, we will get the total time

complexity of both Algorithm 3 and Algorithm 4, which is O(np log p+n2 p+n2).

Now consider the scenarios of adding a new document or removing an existing

document from the document set on the server. For adding a new document, the

update time complexity would be O(p log p + np + n2). This is because it takes

O(p log p) time to compute the sorted path set for the new document, O(np) time

to intersect with the n existing documents on the server and finally, it takes O(n2) to

recompute the whole data placement. For removing an existing document from the

server, the update time complexity would be just O(n2) as we only need to recompute

the data placement for the rest n−1 documents.

6.4.3 Index Distribution Strategy

In order to improve energy conservation, smart mobile devices can switch between

two operation modes: active mode and doze mode. In the active mode, a device

can listen, compare, and download the required data; while in the doze mode, it turns

off antennas and some processes to save energy. The energy consumed in active

mode can be up to 100 times of that in doze mode [148]. However, after we have

generated a broadcast program σ , mobile clients cannot locate information relevant

to their interests as there is no auxiliary information to assist them, which means

mobile clients would need to stay in active mode all the time. Air indexing can help

to solve this problem.

Air index is a small amount of auxiliary information of the broadcast program σ

and is used to assist mobile clients to calculate the arrival time of information that

they are interested in [139]. The basic idea of air index is that the broadcast server

pre-computes index information (including searchable attributes and delivery time of

data items) and interleaves it with data items (e.g., XML documents) on the broadcast

channel. As mentioned, without air index, mobile clients would have to download all
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XML documents on air to examine which ones satisfy their requests. Therefore, we

need to apply air indexing technique to our generated broadcast program σ . With

the technique, mobile clients can avoid to examine documents on air one by one.

Instead, they can switch to doze mode when uninterested documents are broadcasted

and switch to active mode only when interested documents arrive. After the interested

documents have been retrieved, they can switch back to doze mode again. In this way,

we can significantly save energy for mobile clients.

The basic idea of air indexing technique is to provide auxiliary index information

that annotates the broadcast data on air. Based on index information broadcasted

along with XML data, mobile clients are able to selectively skip unwanted data by

switching into doze mode and switching back to active mode only when the data of

desire arrives. This technique helps to reduce energy consumption of mobile clients.

It is true that the clients still need to stay in active mode to receive matched data after

introducing broadcast indexes. But the clients can simply skip unmatched data in the

meantime. In contrast, if broadcasting data without indexes, the clients will have to

examine all the data on the broadcast channel (no matter the data is matched or not).

In other words, the broadcast indexes provide a way for the clients to avoid scanning

or downloading irrelevant data so as to reduce energy consumption.

In this work, we adopt Compact Index (CI) [129] as our index structure and (1,m)

index scheme [139] as our index distribution strategy.

CI provides a two-tier air index scheme [129]. The basic structure of CI is the

combination of all the DataGuides of XML documents in σ , which utilizes RoXSum

[149] technique to integrate these DataGuides. In this basic index structure, every

unique-label path of a document appears exactly once for supporting simple XPath

queries (like DataGuides). Thus it contains the entire unique-label paths in all of the

XML documents. CI also includes a two-tier structure which enables efficient access

protocol at the client which facilitates the index access. Normally, CI is only 1.5% of

the original XML data in terms of size. More details can be found in [129].
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also

Fig. 6.4 (1,m) index distribution

The idea of (1,m) index scheme [139] is shown in Figure 6.4. From the figure, we

can see that the generated broadcast program σ is divided into m data segments and

before broadcasting each data segment, an index segment will be broadcasted first.

The optimal value m is given by
√

Ldata

Lindex
. Here, Ldata refers to the total length of

the raw broadcast program σ without any index information and Lindex refers to the

length of index, which is CI in our work. (1,m) index scheme can best balance access

time and tuning time of mobile clients. More details can be found in [139].

6.5 Experiments

In this section, we study the performance of our data placement algorithm. We show

its efficiency in terms of access time, which is a common measure of performance in

data broadcasts. Since this is the first work that determines broadcast schedules based

only on XML data on the server, we compare our algorithm with a common random

data placement algorithm (RDPA).
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Table 6.3 Data Sets in Our Experiments

Set Name
Length

Remark
Minimum Maximum Average

DS1 2.4KB 8.1KB 5.0KB 6 clusters
DS2 0.5KB 45.9KB 12.4KB miscellaneous
DS3 2.4KB 24.8KB 9.9KB hybrid
DS4 0.5KB 55.8KB 12.3KB miscellaneous
DS5 0.3KB 65.6KB 12.7KB miscellaneous

6.5.1 Experimental Setup

The experiments are run on three data sets (DS1, DS2, DS3) each with 250 XML

documents and two more data sets (DS4, DS5) with 500 and 1000 XML documents,

respectively. All generated documents are defined by News Industry Text Format

(NITF) DTD [150]. This DTD is published for news copy production, press releases,

and Web-based news organizations. The average depth of all five document sets is

between 6 and 8 while the maximum depth is 22.

The details of these data sets are shown in Table 6.3. Data in DS1 can be well

clustered into 6 clusters. Moreover, for any two documents di,d j in two different

clusters of DS1, the minimum similarity values, the maximum similarity values and

the average similarity values of all four metrics (normalized Cohesion is adopted

here) are shown in Table 6.4. We can see that all clusters are quite different from

each other and share very little structural information. Data in DS2 are miscellaneous.

Documents in DS2 cannot be classified into fine clusters. Data in DS3 are a mix

of well-clustered data and miscellaneous data, which include 125 XML documents

from DS1 and 125 XML documents from DS2. Similar to DS2, data in DS4, DS5 are

miscellaneous as well.

In the experiments, XPath queries are generated using the generator developed by

[151]. Queries are allowed to repeat. The generator provides several parameters to

generate different types of XPath queries, such as query depth, probability of ‘*’ and
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Table 6.4 Similarity between Clusters in DS1

Metric
Similarity

Minimum Maximum Average
Jaccard 0.0097 0.1102 0.0435

Dice 0.0049 0.0583 0.0225
Lian 0.0057 0.1039 0.0345

Cohesion 0.0229 0.4620 0.1457

Table 6.5 Workload Parameters for the Experiments

Parameter Range Default Description
PROB 5% to 30% 10% probability(* and //)
QIR 0.1 to 5 1 query incoming rate

MQD 5 to 8 7 maximum query depth

‘//’ and so on. The probability of ‘*’ and ‘//’ appearing in each query’s step is between

5% and 30% (denoted PROB, and the default value is 10%). Query Incoming Rate

(denoted QIR) means the number of newly issued queries from mobile clients in a unit

of time, i.e., the time that mobile wireless system takes to broadcast a block of 1024-

byte XML data. The maximum depth of generated XPath queries (denoted MQD) is

between 5 and 8. Table 6.5 shows the value range of parameters in the experiments.

It should be noted that we assume the user queries follow a uniform distribution.

The random data placement algorithm (denoted RDPA) is compared with GDPA

(implemented using all four similarity metrics defined in Equations (6.1), (6.2), (6.3)

and (6.12)). In RDPA, the server broadcasts XML documents in a random order. This

random order is implemented by a Java class Random (JDK version 7). When apply-

ing a series of pseudorandom numbers on the order of XML documents in a broadcast

program, there would be conflicts. For example, suppose there are N documents in

total to be broadcasted. We need to generate pseudorandom numbers between 1 and

N. After we have randomly placed k out of N documents, the next chosen document

may be one of the first k documents. If such case happens, we simply ignore it and
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use Random class to generate pseudorandom numbers between 1 and N− k for the

rest N− k documents. In this way, we can simulate a random order of N documents.

We implement both RDPA and GDPA on Java Platform Standard Edition 6 run-

ning on Windows 7 Enterprise, 64-bit Operating System. All our experiments are

obtained by running 30 consecutive broadcast cycles. When we vary PROB, we set

QIR and MQD to their default values. When we vary QIR, we set PROB and MQD

to their default values. Similarly, when we vary MQD, we set PROB and QIR to their

default values.

6.5.2 Performance of GDPA

Our experimental results are shown in Fig. 6.5 to 6.9. Average access time (AAT )

is our performance metric and we seek to minimize it. Also we only consider AAT

for all successful matched queries and abandon unsuccessful matched queries. The

main reason for this is that, AAT of unsuccessful queries is determined by index

distribution but not by data placement results (more details about this can be found in

[139]). Note that, GDPA can be implemented with four different similarity metrics

defined in Section 6.4, which are Jaccard metric, Dice’s coefficient, Lian’s metric

and our proposed Cohesion. Through our experiments, Jaccard metric and Dice’s

coefficient always yield the same results. Therefore, we denote GDPA implemented

with them as J/D method in all figures. Meanwhile, we denote GDPA implemented

with Lian’s metric as Lian method and denote GDPA implemented with Cohesion as

Cohesion method.

Fig. 6.5 shows the results on DS1. From the figure we can see that all GDPA

methods outperform RDPA significantly. Specifically, the J/D method achieves the

best results while the Lian method and Cohesion method provides similar results.

This indicates that the J/D method better fits well-clustered data. Also, the reason for

the Lian method and Cohesion method showing similar results is that both methods
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Fig. 6.5 Evaluating AAT Performance on DS1: well-clustered data set with 250 docu-
ments
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Fig. 6.6 Evaluating AAT Performance on DS2: miscellaneous data set with 250 docu-
ments
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Fig. 6.7 Evaluating AAT Performance on DS3: a mixed set of well-clustered data and
miscellaneous data with 250 documents
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Fig. 6.8 Evaluating AAT Performance on DS4: miscellaneous data set with 500 docu-
ments



6.5 Experiments 163

5 10 15 20 25 30
1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.2
x 10

4

Probability of * and // (%)

A
ve

ra
ge

 A
cc

es
s 

T
im

e

 

 

RDPA
J/D
Lian
Cohesion

(a) Varying PROB

0 1 2 3 4 5
1.17

1.175

1.18

1.185

1.19

1.195

1.2

1.205

1.21
x 10

4

Query Incoming Rate

A
ve

ra
ge

 A
cc

es
s 

T
im

e

 

 
RDPA
J/D
Lian
Cohesion

(b) Varying QIR

5 5.5 6 6.5 7 7.5 8
1.17

1.18

1.19

1.2

1.21

1.22
x 10

4

Maximum Query Depth

A
ve

ra
ge

 A
cc

es
s 

T
im

e

 

 

RDPA
J/D
Lian
Cohesion

(c) Varying MQD

Fig. 6.9 Evaluating AAT Performance on DS5: miscellaneous data set with 1000
documents
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place emphasis on the common structure of XML documents against the larger docu-

ment (see also Equations (6.3) and (6.11)). Further, since DS1 is well-clustered, from

the definitions of the Lian and Cohesion metrics, we can also infer that the partial or-

der of similarity results using these two methods are similar to each other. Note that,

according to the data placement algorithm described in Section 6.4, the data place-

ment results are determined by the partial order of the similarity results. Hence, for

DS1, Lian method and Cohesion method yield similar results.

In Fig. 6.5a, GDPA methods become slightly worse when PROB increases. Since

DS1 is well-clustered, most queries only require documents in the same clusters. Thus

PROB has less effect on AAT . In Fig. 6.5b, when QIR increases, J/D method becomes

slightly better. This indicates that J/D method can achieve better scalability than other

methods when accessing well-clustered data. Fig. 6.5c shows that all GDPA methods

remain stable as MQD increases. It is interesting to note that for RDPA, AAT always

remains stable.

Fig. 6.6 shows the results on DS2. From the figure we can see that all GDPA meth-

ods achieve better performance when compared with RDPA. Specifically, Cohesion

method achieves the best results while J/D method achieves the worst results among

GDPA methods. This indicates that Cohesion method better fits miscellaneous data.

In Fig. 6.6a, both GDPA methods and RDPA become worse when PROB increases. It

is clear that PROB has more effect on AAT for miscellaneous data. In Fig. 6.6b, when

QIR increases from 0.1 to 0.5, GDPA methods J/D and Lian together with RDPA per-

form worse while Cohesion method still performs better. The reason for this is that

the number of queries that can take advantage of the clustering results fluctuates when

QIR is small. After that, when QIR increases, all methods performs slightly better.

This shows that Cohesion method can achieve best scalability when accessing miscel-

laneous data. Fig. 6.6c shows that all methods achieve better AAT as MQD increases

since selectivity of queries drops with the increase of MQD.
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Fig. 6.7 shows the results on DS3. Similarly, all GDPA methods achieve better

performance when compared with RDPA. Specifically, Lian method achieves the best

results while J/D method provides the worst results among GDPA methods. This

shows that Lian method better fits hybrid data. However, Cohesion method achieves

very similar performance to Lian method. In Fig. 6.7a, both GDPA methods and

RDPA become worse when PROB increases. PROB has more effect on AAT for

hybrid data. In Fig. 6.7b, when QIR increases, all GDPA methods become slightly

better and still Lian method provides the best results. Figure 6.7c shows that all

methods achieve better AAT as MQD increases since selectivity of queries drops with

the increase of MQD.

We also conducted similar experiments using larger data sets (including 500 and

1,000 XML documents respectively). The results of experiments are shown in Fig. 6.8

and Fig. 6.9. From these figures, we can see the similar trends which are observed in

Fig. 6.6.

Therefore, from the above experiments, we can see that GDPA methods always

achieve better AAT when compared with RDPA. When accessing well-clustered data,

J/D method achieves the best performance. When accessing miscellaneous data, Co-

hesion method provides better performance in most cases. This is because the J/D

metric emphasizes on the common paths between two XML documents according to

their definitions (the Jaccard and Dice similarity definitions). This also means, the

J/D metric is more suitable for well-clustered data sets. In contrast, the Cohesion

metric emphasizes both the common paths (representing the probability that two doc-

uments are matched against a given query at the same time) and the difference in the

path sets of two documents (representing the probability that two documents are not

matched against the same query at the same time). Therefore, the Cohesion metric is

more suitable for miscellaneous data sets. Finally when accessing hybrid data, Lian

method shows better performance in most cases since Lian method emphasizes on

the difference between XML documents but not on common paths.
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Table 6.6 Query Selectivity and Document Coverage Rate

Data Set Query Selectivity Coverage Rate
DS1 44.8% 100%
DS2 33.6% 100%
DS3 35.6% 100%
DS4 32.6% 100%
DS5 33.2% 100%

We also investigate query selectivity and document coverage rate in our experi-

ments. Here, query selectivity refers to the average proportion of documents matched

with a user query and document coverage rate refers to the proportion of documents

in the entire document set on the server required by at least one user query. The re-

sults are obtained using all workload parameters at default values. As can be seen

from Table 6.6, the query selectivity is ranging from around 32% to 45%. The main

reason for this is that the probability of * and // is 10% by default. Further, for all data

sets. the document coverage rate is 100%, which is mainly due to the same reason of

query selectivity. This shows that all documents on the server are covered in all our

experiments.

Finally, we study the maintenance cost of our data placement algorithms. The

maintenance cost is measured when adding a new document to the server or removing

an existing document from the server. The maintenance results are shown in Table 6.7.

From the table we can see that, when adding a new document in a document set with

250 documents on the server, the time cost to calculate the similarity between the new

document and all the existing documents (shown as “Similarity Time" in the table)

ranges from 209 milliseconds to 238 milliseconds on average for the Dice, Jaccard

and Lian metrics. For the Cohesion metric, it takes 378 milliseconds on average,

which is longer due to fact that the Cohesion metric requires more set operations

that the other three metrics. Meanwhile, the time cost to readjust the data placement

(shown as “Placement Time" in the table) is quite similar among all four metrics,
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Table 6.7 Data Placement Update Time (in milliseconds)

No. of Doc. Metric
Add Remove

Similarity Time Placement Time Placement Time

250

Dice 228 168 165
Jaccard 209 169 174

Lian 238 174 171
Cohesion 378 181 185

500

Dice 343 745 751
Jaccard 359 814 811

Lian 419 844 837
Cohesion 763 811 801

1000

Dice 781 1212 1233
Jaccard 640 1152 1187

Lian 691 1192 1202
Cohesion 1130 1298 1275

which is ranging from 168 milliseconds to 181 milliseconds. A similar pattern is

observed when adding a new document to a larger document set.

On the other hand, when removing an existing document from the server, only

Placement Time will be incurred. From the table we can see that, similarly, the Place-

ment Time costs for four metrics are quite similar to each other. For example, when

removing an existing document from a document set with 250 documents, the Place-

ment Time is ranging from 165 milliseconds to 185 milliseconds. Again, a similar

pattern is observed when removing an existing document from a larger document set.

6.6 Related Work

Many studies have been claimed out to investigate data placement techniques to re-

duce access time [152–154]. These studies generally assume that each user query re-

quires one data item only. Other studies handle data placement problems for queries

that may require multiple data items.
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Multi-item data placement problem is related to the data placement problem of

XML data which is the focus of our work. It has been proven to be an NP-Complete

problem [147]. A data placement method for multi-item queries called QEM is intro-

duced in [155], which opened up a new perspective in this field. In addition, several

improved methods are proposed [156, 138]. The above work is all within the scope of

periodic broadcast and generally assumes that the clients’ queries are already known

in advance. However, in some applications, the user demands may be either unknown

or costly to collect the related information due to the mobility of mobile users and

privacy concerns.

Multi-item data placement problem in the on-demand broadcast mode has also

attracted lots of interest [134, 157]. These approaches are in pure on-demand broad-

cast mode and strictly require that mobile clients submit their queries to the server

for desired data. Otherwise, the server will not broadcast related data on air. This

is because the server filters and schedules data based solely on submitted queries.

However, frequent use of uplink channel leads to high communication cost via uplink

channel, which can shorten battery life of mobile clients dramatically.

The above mentioned studies focus on flat data broadcasts, in which indexes of

data items are generally key-based and data do not contain structural information. Re-

cently, besides the traditional flat data broadcast, a wealth of work dealing with XML

data broadcast has appeared. Some work addresses the performance optimization

of query processing of XML streams in wireless broadcast [127, 158], while other

work designs indexing techniques for XML data broadcast based on existing XML

indexing techniques [128, 129]. However, their work mainly focuses on air indexing

techniques similar to content based indexing techniques in XML stream processing or

XPath query based indexing techniques. Moreover, this kind of work does not study

the data placement problem for XML data broadcast.

Data placement problem for XML data broadcast is investigated in [159]. In

that work, the broadcast schedules are generated based on clustering results of XML
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data on the server. However, the clustering process requires manually specifying the

number of clusters and has to compare different clustering results based on clients’

query distribution in order to find the optimal clustering result, which differs from

our work.

6.7 Summary

In this chapter, we have studied the data placement problem of periodic XML data

broadcast. Taking advantage of the structured characteristics of XML data, we are

able to generate effective broadcast programs based only on XML data on the server.

This not only distinguishes our work from previous studies, but also enables it to have

broader applicability. We have performed a theoretical analysis of the problem and

discussed structural sharing in XML data which forms the basis of our novel greedy

data placement algorithm (GDPA). Our experiments demonstrated that the proposed

algorithm could improve access efficiency and achieve better scalability.





Chapter 7

Emerging IoT Applications and Open

Issues

7.1 Emerging IoT Applications

As pointed out by [1] that IoT “has the potential to change the world, just as the In-

ternet did”. The ongoing and/or emerging IoT applications show that IoT can bring

significant changes in many domains, i.e., cities and homes, environment monitor-

ing, health, energy, and business, etc. IoT can bring the ability to react to events in

the physical world in an automatic, rapid and informed manner. This also opens up

new opportunities for dealing with complex or critical situations and enables a wide

variety of business processes to be optimized. In this section, we overview several

representative domains where IoT can make some profound changes.

7.1.1 Smart Cities and Homes

IoT can connect billions of smart things and can help capture information in cities.

Based on IoT, cities could become smarter and more efficient. Below are some ex-

amples of promising IoT applications in future smart cities. In a modern city, lots
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of digital data traces are generated there every second via cameras and sensors of all

kinds [160]. All this data can be exploited to provide better services to city inhab-

itants, if these inhabitants would be able to take advantage of it in an efficient and

effective way. For example, IoT can facilitate resources management issues for mod-

ern cities. Specifically, static resources (e.g., fire stations, parking spots) and mobile

resources (e.g., police cars, fire trucks) in a city can be managed effectively using IoT

technologies. Whenever events (fires, crime reports, cars looking for parking) arise,

IoT technologies would be able to quickly match resources with events in an optimal

way based on the information captured by smart things, thereby reducing cost and

saving time. Taxi drivers in the city would also be able to better serve prospective

passengers by learning passenger’s mobility patterns and other taxi drivers’ serving

behaviors through the help of IoT technologies [161]. One study estimated a loss of

$78 billion in 2007 in the form of 4.2 billion lost hours and 2.9 billion gallons of

wasted gasoline in the United States alone [100]. IoT has the potential to bring funda-

mental changes in urban street-parking management, which would greatly benefit the

whole society by reducing traffic congestion and fuel consumption.

With IoT technologies, people can browse and manage their homes via the Web.

For example, they would be able to check whether the light in their bedrooms is on

and could turn it off by simply clicking a button on a Web page. Similar operations

and management could be done in office environments. Plumbing is ranked as one of

the ten most frequently found problems in homes [162]. It is important to determine

the spatial topology of hidden water pipelines behind walls and underground. In IoT,

smart things in homes would be able to report plumbing problems automatically and

report to owners and/or plumbers for efficient maintenance and repair.
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7.1.2 Environment Monitoring

IoT technologies can also help to monitor and protect environments thereby improv-

ing human’s knowledge about environments. Take water as an example. Understand-

ing the dynamics of bodies of water and their impact on the global environment re-

quires sensing information over the full volume of water. In such context, IoT tech-

nologies would be able to provide effective approaches to study water. Also IoT could

improve water management in a city. Drinking water is becoming a scarce resource

around the world. In big cities, efficiently distributing water is one of the major is-

sues [160]. Various reports show that on average 30% of drinkable water is lost during

transmission due to the aging infrastructure and pipe failures. Further, water can be

contaminated biologically or chemically due to inefficient operation and management.

In order to effectively manage and efficiently transport water, IoT technologies would

be of great importance.

Soil contains vast ecosystems that play a key role in the Earth’s water and nutrient

cycles, but scientists cannot currently collect the high-resolution data required to fully

understand them. Many soil sensors are inherently fragile and often produce invalid

or uncalibrated data [163]. IoT technologies would help to validate, calibrate, repair,

or replace sensors, allowing to use available sensors without sacrificing data integrity

and meanwhile minimizing the human resources required.

Sound is another example where IoT technologies can help. Sound is multidimen-

sional, varying in intensity and spectra. So it is difficult to quantify, e.g., it is difficult

to determine what kind of sound is noise. Further, the definitions and feelings of

noise are quite subjective. For example, some noises could be pleasant, like flowing

water, while others can be annoying, such as car alarms, screeching breaks and people

arguing. A device has been designed and built to monitor residential noise pollution

to address the above problems [164]. Firstly, noise samples from three representative

houses are used, which span the spectrum of quiet to noisy neighborhoods. Secondly,
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a noise model is developed to characterize residential noise. Thirdly, noise events of

an entire day (24 hours) are compressed into a one minute auditory summary. Data

collection, transmission and storage requirements can be minimized in order to utilize

low-cost and low-power components, while sufficient measurement accuracy is still

maintained.

Intel has developed smart sensors that can warn people about running outside

when the air is polluted1. For example, if someone is preparing to take a jog along

his/her regular route, an application on his/her smartphone pushes out a message: air

pollution levels are high in the park where he/she usually runs. Then he/she could try

a recommended route that is cleaner. Currently, many cities already have pollution

and weather sensors. They are usually located on top of buildings, far from daily

human activities.

7.1.3 Health

In future IoT environments, an RFID-enabled information infrastructure would be

likely to revolutionize areas such as healthcare, and pharmaceutical. For example,

a healthcare environment such as a large hospital or aged care could tag all pieces

of medical equipment (e.g., scalpels, thermometers) and drug products for inventory

management. Each storage area or patient room would be equipped with RFID read-

ers that could scan medical devices, drug products, and their associated cases. Such

an RFID-based infrastructure could offer a hospital unprecedented near real-time abil-

ity to track and monitor objects and detect anomalies (e.g., misplaced objects) as they

occur. For example, it is suggested that a simple surgery checklist can save lives2.

As personal health sensors become ubiquitous, they are expected to become inter-

operable. This means standardized sensors can wirelessly communicate their data to

1http://www.fastcoexist.com/1680111/intels-sensors-will-warn-you-about-running-outside-when-
the-air-is-polluted

2http://content.time.com/time/health/article/0,8599,1871759,00.html
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a device many people already carry today (e.g., mobile phones). It is argued by [165]

that one challenge in weight control is the difficulty of tracking food calories con-

sumed and calories expended by activity. Then they present a system for automatic

monitoring of calories consumed using a single body-worn accelerometer. To be fully

benefited from such data for a large body of people, applying IoT technologies in such

area would be a promising direction.

Mobile technology and sensors are creating ways to inexpensively and continu-

ously monitor people’s health. Doctors may call their clients to schedule an appoint-

ment,rather than vice-versa, because the doctors could know their clients’ health con-

ditions in real-time. Some projects for such purpose have been initiated. For example,

EveryHeartBeat3 is a project for Body Computing to “connect the more than 5 billion

mobile phones in the world to the health ecosystem". In the initial stage, heart rate

monitoring is investigated. Consumers would be able to self track their pulse and

studies show heart rate monitoring could be useful in detecting heart conditions and

enabling early diagnosis. The future goal is to include data on blood sugar levels, and

other biometrics collected via mobile devices.

7.1.4 Energy

Home heating is a major factor in worldwide energy use. In IoT, home energy manage-

ment applications could be built upon embedded Web servers [166]. Through such

online web services, people can track and manage their home energy consumption.

A system is designed by [167] for augmenting these thermostats using just-in-time

heating and cooling based on travel-to-home distance obtained from location-aware

mobile phones. The system makes use of a GPS-enabled thermostat which could

lead to savings of as much as 7%. In IoT, as things in homes would become smart

and connected to the Internet, similar energy savings could be more effective. For

3http://join.everyheartbeat.org/
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example, by automatically sensing occupancy and sleep patterns in a home, it would

be possible to save energy by automatically turning off the home’s HVAC (heating,

ventilation, and air conditioning) system.

Beside home heating, fuel consumption is also an important issue. GreenGPS, a

navigation service that uses participatory sensing data to map fuel consumption on

city streets, has been designed by [168]. GreenGPS would allow drivers to find the

most fuel-efficient routes for their vehicles between arbitrary end-points. In IoT, fuel

consumption would be further reduced by enabling cars and passengers to communi-

cate with each other for ride sharing [161].

7.1.5 Business

IoT technologies would be able to help to improve efficiency in business and bring

other impacts on business [169]:

• From a commercial point of view, IoT can help increase the efficiency of busi-

ness processes and reduce costs in warehouse logistics and in service industries.

This is because more complete and necessary information can be collected by

interconnected things. owing to its huge and profound impact on the society,

IoT research and applications can also trigger new business models involving

smart things and associated services.

• From a social and political point of view, IoT technologies can provide a general

increase in the quality of life for the following reasons. Firstly, consumers

and citizens will be able to obtain more comprehensive information. Secondly,

care for aged and/or disabled people can be improved with smarter assistance

systems. Thirdly, safety can be increased. For example, road safety can be

improved by receiving more complete and real-time traffic and road condition

information.
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• From a personal point of view, new services enabled by IoT technologies can

make life more pleasant, entertaining, independent and also safer. For example,

business taking advantages of technologies of search of things in IoT can help

locate lost things quickly, such as personal belongs, pets or even other people.

Besides, take improving information handover efficiency in a global supply chain

as an example. The concept of digital object memories (DOM) is proposed in [170],

which can store order-related data via smart labels on the item. Based on DOM,

relevant life cycle information could be attached to the product itself. Considering

the potential different stakeholders including manufacturer, distributor, retailer, and

end customer along the supply/value chain, this approach facilitates information han-

dover.

Further, there are many important bits of information in an IoT-based supply chain,

such as the 5W (what, when, where, who, which). It is also necessary to integrate

them efficiently and in real-time in other operations. The EPCIS (Electronic Product

Code Information System) network is a set of tools and standards for tracking and

sharing RFID-tagged products in IoT. However, much of this data remains in closed

networks and is hard to integrate [171]. IoT technologies could be used to make it

easier to use all this data, to integrate it into various applications, and to build more

flexible, scalable, global application for better (even real-time) logistics.

7.2 Open Issues

The development of IoT technologies and applications is merely beginning. Many

new challenges and issues have not been addressed, which require substantial efforts

from both academia and industry. In this section, we identify some key directions for

future research and development from a data-centric perspective.
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• Data Quality and Uncertainty: In IoT, as data volume increases, inconsistency

and redundancy within data would become paramount issues. One of the cen-

tral problems for data quality is inconsistency detection and when data is dis-

tributed, the detection would be far more challenging [172]. This is because

inconsistency detection often requires shipping data from one site to another.

Meanwhile, inherited from RFID data and sensor data, IoT data would be of

great uncertainty, which also presents significant challenges.

• Co-Space Data: In an IoT environment, the physical space and the virtual (data)

space co-exist, and interact simultaneously. Novel technologies must be devel-

oped to allow data to be processed and manipulated seamlessly between the real

and digital spaces [173]. To synchronize data in both real and virtual worlds,

large amount of data and information will flow between co-spaces, which pose

new challenges. For example, it would be challenging to process heteroge-

neous data streams in order to model and simulate real world events in the

virtual world. Besides, more intelligent processing is needed to identify and

send interesting events in the co-space to objects in the physical world.

• Transaction Handling: When the data being updated is spread across hundreds

or thousands of networked computers/smart things with differing update poli-

cies, it would be difficult to define what the transaction is. In addition, most of

things are resource-constrained, which are typically connected to the Internet

using light-weight, stateless protocols such as CoAP (Constrained Application

Protocol)4 and 6LoWPAN (IPv6 over Low Power Wireless Personal Area Net-

works)5 and accessed using RESTful Web services. This makes transaction

handling in IoT a great challenge. As pointed out by [2] that the problem is

that the world is changing fast, the data representing the world is on multiple

4http://tools.ietf.org/html/draft-ietf-core-coap-18
5http://tools.ietf.org/wg/6lowpan
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networked computers/smart things and existing database technologies cannot

manage. Techniques developed for streamed and real-time data may provide

some hints.

• Frequently Updated Timestamped Structured (FUTS) Data: The Internet, and

hence IoT, contains potentially billions of Frequently Updated Timestamped

Structured (FUTS) data sources, such as real-time traffic reports, air pollution

detection, temperature monitoring, crops monitoring, etc. FUTS data sources

contain states and updates of physical world things. Current technologies are

not capable in dealing with FUTS data sources [2] because: (i) no data man-

agement system can easily display FUTS past data; (ii) no efficient crawler or

storage engine is able to collect and store FUTS data; and (iii) querying and

delivering FUTS data is hardly supported. All these pose great challenges for

the design of novel data management systems for FUTS data.

• Distributed and Mobile Data: In IoT, data will be increasingly distributed and

mobile. Different from traditional mobile data, distributed and mobile data in

IoT would be much more highly distributed and data intensive. In the context

of interconnecting huge numbers of mobile and smart objects, centralized data

stores would not be a suitable tool to manage all the dynamics of mobile data

produced in IoT. Thus there is a need for novel ways to manage distributed and

mobile data efficiently and effectively in IoT.

• Semantic Enrichment and Semantic Event Processing: The full potentials of

IoT would heavily rely on the progress of the semantic Web. This is because

things and machines should play a much more important role than humans in

IoT to process and understand data. This calls for new research in Seman-

tic technologies. For example, there are increasing efforts in building public

knowledge bases (such as DBpedia, FreeBase, Linked Open Data Cloud, etc.).
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But how these knowledge bases can be effectively used to add to the under-

standing of raw data coming from sensor data streams and other types of data

streams? To resolve this challenge, semantic enrichment of sensing data is a

promising research direction. Further, consider the potential excessively large

amount of subscriptions to IoT data. To produce proper semantic enrichment

to meet different enrichment needs from different subscribers poses great chal-

lenges. Finally, how to effectively incorporate semantic enrichment techniques

with semantic event processing to provide much better expressiveness in event

processing is still at its initial stage. This will also demand a large amount of

research effort.

• Mining: Data mining aims to facilitate the exploration and analysis of large

amounts of data, which can help to extract useful information for huge volume

of IoT data. Data mining challenges may include extraction of temporal charac-

teristics from sensor data streams, event detection from multiple data streams,

data stream classification, activity discovery and recognition from sensor data

streams. Besides, clustering and table summarization in large data sets, mining

large (data, information or social) networks, sampling, and information extrac-

tion from the Web are also great challenges in IoT.

• Knowledge Discovery: Knowledge discovery is the process of extracting useful

knowledge from data. This is essential especially when connected things popu-

late their data to the Web. The following issues related to knowledge discovery

in IoT have been identified by [174]: (i) automatic extraction of relational facts

from natural-language text and multi-modal contexts; (ii) large-scale gathering

of factual-knowledge candidates and their reconciliation into comprehensive

knowledge bases; (iii) reasoning on uncertain hypotheses, for knowledge dis-
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covery and semantic search; and (iv) deep and real-time question answering,

e.g., to enable computers to win quiz game shows6.

• Security: Due to the proliferation of embedded devices in IoT, effective de-

vice security mechanisms are essential to the development of IoT technologies

and applications. The National Intelligence Council [6] argues that, to the ex-

tent that everyday objects become information security risks, the IoT could dis-

tribute those risks far more widely than the Internet has to date. For example,

RFID security presents many challenges. Potential solutions should consider

aspects from hardware and wireless protocol security to the management, regu-

lation and sharing of collected RFID data [175]. Besides, it is argued by [176]

that there is still no generic framework for deploying and extending traditional

security mechanisms over a variety of pervasive systems. Regarding security

concerns of the network layer, it is suggested by [177] that the Internet can be

gradually encrypted and authenticated based on the observations that the recent

advances in implementation of cryptographic algorithms have made general

purpose processors capable of encrypting packets at high rates. But how to gen-

eralize such algorithms to IoT would be challenging as things in IoT normally

only maintain low transmission rates and connections are usually intermittent.

• Privacy: Privacy protection is a serious challenge in IoT. One of the funda-

mental problems is the lack of a mechanism to help people expose appropriate

amounts of their identity information. Embedded sensing is becoming more

and more prevalent on personal devices such as mobile phones and multi-media

players. Since people are typically wearing and carrying devices capable of

sensing, details such as activity, location, and environment could become avail-

able to other people. Hence, personal sensing can be used to detect their physi-

cal activities and bring about privacy concerns [178].

6http://www.ibm.com/smarterplanet/us/en/ibmwatson/
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• Social Concerns: Since IoT connects everyday objects to the Internet, social

concerns would become a hot topic in the development of IoT. Further, online

social networks with personal things information may incur social concerns

as well, such as disclosures of personal activities and hobbies, etc. Appropriate

economic and legal conditions and a social consensus on how the new technical

opportunities in IoT should be used also represents a substantial task for the

future [169].
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Conclusions and Future Work

8.1 Conclusions

It is widely predicted that the next generation of the Internet will be comprised of tril-

lions of connected computing nodes at a global scale. Through these nodes, everyday

objects in the world can be identified, connected to the Internet and take decisions in-

dependently. In this context, Internet of Things (IoT) is considered a new revolution

of the Internet. In IoT, the possibility of seamlessly merging the real and the virtual

worlds, through the massive deployment of embedded devices, opens up many new

and exciting directions for both research and development. In this article, we have

provided an overview of some key research areas of IoT, specifically from a data-

centric perspective. It also presents a number of fundamental issues to be resolved

before we can fully realize the promise of IoT applications.

This thesis has reviewed the state-of-the-art research efforts in IoT in Chapter 2

from data-centric perspectives, including data stream processing, data storage models,

complex event processing, and searching in IoT by identifying an IoT data taxonomy,

which includes ten key data elements of IoT data under three categorizations. This the-

sis has focused on three aspects of data management in IoT, including data dynamics,

data velocity, and data incompleteness. More specifically, we study data dynamics in
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dynamic graphs, handle data velocity in streams, and tackle data incompleteness via

sharing.

Chapter 3 has proposed SIEF for computing the shortest path distance in graphs

subject to edge failures. Extensive experiments have also been performed using six

real-world graphs to confirm its effectiveness and efficiency. SIEF is able to sup-

port compact index construction for all single-edge failure cases in graphs efficiently.

Specifically, the SIEF index size is comparable to that of the indexes constructed for

original static graphs, which is very compact. SIEF can answer distance queries with

single-edge failure constraints several orders of magnitude faster than traditional BFS

algorithms. Moreover, SIEF can answer distance queries on multi-edge failure with

high accuracy and fast response time.

Chapter 4 has proposed two new data structures, namely TP-automata and CTP-

automata, to support efficient pattern matching over Linked Data streams. Firstly,

in order to efficiently match a large number of user queries that contain only single

triple patterns against Linked Data streams, TP-automata has been designed. The

experiments have shown that TP-automata can disseminate Linked Data at the speed

of nearly one million triples per second with 100,000 registered user queries and

is several orders of magnitude faster in terms of both index construction time and

throughput compared with the state-of-the-art technique. Further, using hash-based

TP-automata, the throughput is doubled compared with string-based TP-automata

with high matching quality. Secondly, in order to efficiently match a large number

of conjunctive triple pattern queries against Linked Data streams in batch mode, simi-

larly, CTP-automata has also been designed. CTP-automata has been experimentally

demonstrated that it can disseminate Linked Data an order of magnitude faster than

the existing approaches.

Chapter 5 has proposed an effective and efficient air indexing method for broad-

casting Linked Data on air, which can be used in data sharing among a large number

of mobile and smart objects in the era of IoT. The proposed method is based on 3D
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Hilbert curve mappings. RDF triples are mapped into points in a 3D space and then

adopt 3D Hilbert curve mappings to convert all the 3D points into one-dimensional

points. An efficient search algorithm has also been devised to facilitate query process-

ing over the Linked Data on air. Experiments have been conducted and the proposed

method has shown better performance over the traditional R-tree based method in

various aspects, including access latency, tuning time, and index size.

Chapter 6 has studied the data placement problem of periodic XML data broad-

cast. Taking advantage of the structured characteristics of XML data, it is feasible

to generate effective broadcast programs based only on XML data on the server. A

detailed theoretical analysis of the problem has been provided and structural sharing

in XML data has also been discussed, which forms the basis of the proposed GDPA

algorithm. The experiments have demonstrated that the proposed algorithm could

improve access efficiency and achieve better scalability.

This thesis has also discussed on-going and emerging IoT applications, and open

research issues for processing and managing IoT data in Chapter 7. Several represen-

tative domains where IoT can make profound changes are explored, and some key

directions for future research and development from a data-centric perspective have

been identified.

8.2 Directions for Future Work

In Chapter 7, we have already identified a number of open issues in IoT research and

development (see Section 7.2). In the following, we further identify some possible

research directions for future research in data management in IoT. These directions

are basically extensions or further work on top of the research presented in this thesis.
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Query Processing in a Graph with Edge Failures

There are several aspects in handling distance queries in graphs with edge failures.

The first aspect centers on how to support exact distance queries with more complex

edge failure constraints, i.e., dual-failure or triple-failure on edges. The second as-

pect is to further speed up the index construction process in order to process larger

graphs. In addition, it is also interesting to investigate the problem of answering dis-

tance queries in graphs with node failures, which is even more challenging than edge

failures.

Apart from answering simple point-to-point distance queries in graphs with edge

failures, more complex queries based on point-to-point distance can also be inves-

tigated. For example, betweenness centrality query processing in graphs with edge

failures is also an interesting research direction. As a node with high betweenness

centrality has a large influence on the transfer of items through the network, fast be-

tweenness computation in dynamic networks can help to efficiently identify the most

influenced nodes in a network.

Linked Data Streams Processing in the Context of IoT

In future, it is imperative to support efficient matching for larger scales of user queries

over Linked Data streams, specially user queries containing conjunctive triple pat-

terns, which would be a critical issue in the emerging Internet of Things. In addition,

it is also important to investigate how to support semantic matching over Linked Data

streams to further cater heterogeneous data consumption needs from a rich variety

of data consumers in IoT. Semantic matching in a hashing space with the use of Lo-

cality Sensitive Hashing (LSH) techniques [179] could be an effective way to help

to map semantically related data together, thereby enabling matching user queries

and Linked Data streams approximately. Both directions will enable the Linked Data

dissemination system to provide better semantics richness and to support data con-
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sumption needs more efficiently and more accurately, which we believe would be a

critical issue in the emerging IoT.

Broadcasting Linked Data in IoT Accurately and Efficiently

The work on broadcasting Linked Data on-air using 3D-Hilbert curves presented in

this thesis can be extended to support join queries, where data consumption needs can

be expressed more accurately. It is also important to investigate the scalability of the

broadcast system in terms of real-time construction of air indexes for broadcasting

Linked Data streams with high stream rates and highly dynamic mobile users, which

is a challenging issue in the context of IoT.

Broadcasting XML Data in IoT

In future, it is interesting to further improve the performance of our periodic XML

data broadcast system by investigating the insights of structural sharing among XML

documents. For example, it might be useful to consider details on how to measure

structural sharing distribution in an XML document set, how the distribution affects

the expected access time of queries and how to choose a similarity metric based on

structural sharing distribution in a set of XML documents, etc. This basically targets

at improving the system by using different clustering strategies.

More directions of future work may include: (1) It might also be possible to show

that GDPA is better than random theoretically by estimating probability of the next

item in the program being relevant. (2) We can also generalize our broadcasting

scenario to the case that each mobile client has a set of very different queries, i.e., in

the sense that answers are very different. It is interesting to see how the system can

efficiently handle queries from the same user efficiently. (3) It is also interesting to

investigate how to generate a broadcast program by considering both similarity and

popularity of broadcasting items.
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