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Silver(I) coordination polymers of the 'hinged' pyrazine containing 

ligand di-2-pyrazinylmethane 

Herein, we report a series of 1, 2, and 3D coordination polymers formed from di-

2-pyrazinylmethane (dpzm) and silver(I) salts in which we examine the role the 

non-coordinating methylene hinge plays in distorting these structures away from 

those observed for related pyrazine containing coordination polymers. 

{[Ag2(dpzm)(NO3)2]}n (1) is a 1D ladder-like structure, {[Ag(dpzm)]SO3CF3}n 

(2) is a 44 connected 2D network, and {[Ag2(dpzm)3](X)2}n (X = ClO4, 4a; X = 

PF6, 4b), {[Ag4(dpzm)5](BF4)4}n (5) and {[Ag3(dpzm)4](SbF6)3}n (6) have 

pseudo-cubic lattices with some connections between Ag(I) centres missing; this is a 

consequence of the pyrazine in some cases only acting as a monodentate group (4) or 

a low ligand:Ag ratio in 5 and 6. Most of the structures compare well to previously 

reported 1D, 2D and 3D assemblies formed with pyrazine, although an evident 

feature of dpzm coordination was the geometrical restriction of the methylene 

hinge, which was apparent in the long Ag-N bond lengths observed for the 3D 

materials. 

Keywords: silver(I); coordination polymers; N-heterocyclic ligands; pyrazine 

Introduction 

Considerable research into the synthesis of silver(I) coordination polymers (1-3) has 

been driven by interest in such materials for, among other things, rare examples of their 

permanent porosity,(4-7) physical properties such as luminescence and non-linear 

optical properties,(8) and their antimicrobial activity.(9-11) Aside from using it to target 

particular physical or biological properties, silver(I) is often chosen as a building block 

due to its exceptionally rich coordination chemistry, possessing an unmatched flexibility 

in its coordination number (commonly ranging from two to six) and geometry (linear to 

octahedral).(12) Ag(I) prefers soft donors and forms relatively labile bonds with neutral 

donors. As a consequence, the synthesis of silver(I) coordination polymers can be 

extremely sensitive to the reaction conditions; subtle changes in the starting 



stoichiometry, the coordinating ability of the solvent, or temperature of the reaction can 

lead to the assembly of quite different structures as non-covalent interactions play a 

significant role in the overall 3D structure.(13) 

Owing to their coordinating or non-coordinating behaviour, counter-ions play a 

crucial role in the dimensionality and structure of silver(I) coordination polymers.(1, 12, 

14, 15)  Even when the anion is non-coordinating, size decreases in the order: SbF6
− > 

PF6
− > ClO4

− > BF4
− have a considerable affect on the structure.(16) Combined, these 

properties often lead to the formation of entirely different structures with each 

individual anion.(17-21) The choice of organic ligands naturally contributes 

significantly to the structure of silver(I) coordination polymers, and consideration is 

given to length, angle and flexibility of the ligand. Rigid N-heterocyclic azine linkers, 

such as pyrazine (pyz, Figure 1) and 4,4ʹ-bipyridine, have been extensively used in the 

‘node’ and ‘linker’ approach, often yielding predictable silver(I) assemblies.(1, 15, 22) 

In contrast, flexible azine linkers containing alkyl, S, or O spacers only partially restrict 

the conformation of the ligand during synthesis, leading to unusual structures.(1-3, 23, 

24) 

While silver(I) coordination polymers of pyrazine(25-27) and 2,2ʹ-

dipyrazine(20) are well known, the coordination chemistry of di-pyrazinyl compounds 

separated by a one-atom spacer has been attracting recent attention. Notably, this family 

of ligands can chelate to a single metal while the other two donors can coordinate to two 

further metal centres, much like that observed for pyrazine. For example, Wan and 

colleagues reported a series of silver(I) coordination polymers with di-2-

pyrazinylmethanediol (dpzmdOH),(28) di-2-pyrazinylsulfoxide (dpzmSO),(29) and 

sulfonyldipyrazine (dpzmSO2)(30) (Figure 1) and coordination polymers of another 



related ligand, di-2-pyrazinylamine (dpzmNH), were reported by Ismayilov and co-

workers.(31)  
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Figure 1. Pyrazine (pyz) and examples of hinged di-pyrazinyl compounds that have 

been used as ligands. 

 

Recently, we have also synthesised porous 3D silver(I) coordination polymers of 

di-2-pyrazinylmethane (dpzm) (Figure 1) which undergo crystal-to-crystal breathing 

associated with solvent exchange and additional transformations to close-packed 2D 

and 3D materials upon desolvation.(32-33) Interestingly, dpzm is the only compound in 

this family which possesses a spacer that does not engage in coordination.  Herein, we 

report a series of 1, 2, and 3D coordination polymers formed from dpzm and silver(I) 

salts in which we examine the role the non-coordinating methylene hinge plays in 

distorting these structures away from related pyrazine containing coordination 

polymers. 

Experimental 

Materials and methods 

Unless otherwise stated, reagents were purchased from commercial sources and used 



without further purification. Dpzm(34) was prepared by reported procedures. Elemental 

analyses were performed by the Campbell Microanalytical Laboratory at the University 

of Otago. Infrared (IR) spectra were recorded on a PerkinElmer Fourier-Transform 

Infrared (FT-IR) spectrometer using an attenuated total reflectance accessory fitted with 

a zinc-selenide crystal.   

Synthesis 

General Procedure: 

A methanolic solution of the silver(I) salt (2 mL) was added dropwise to a methanolic 

solution of dpzm (2 mL) resulting in an immediate precipitation. The solid was isolated 

under reduced pressure and washed with diethyl ether (10 mL). Crystals of the 

respective coordination polymers were obtained by slow vapour diffusion methods. In 

all cases the crystals were suitable for X-ray crystallography.  

Caution! Whilst no problems were encountered in the course of this work, 

perchlorate salts are strong oxidising agents and are potentially explosive and should be 

handled on a small scale with appropriate care. 

{[Ag2(dpzm)(NO3)2]}n (1) 

AgNO3 (38.0 mg, 0.22 mmol) and dpzm (20.3 mg, 0.12 mmol) were combined 

according to the general procedure. This afforded a white solid (47.0 mg, 92%) Found C 

25.0, H 1.7, 17.5, C18H16N11O9Ag3·¾H2O requires: C 24.9, 2.0, N 17.8. Slow vapour 

diffusion of dichloromethane into a solution of the white solid (13.2 mg, 0.03 mmol) in 

DMSO (0.2 mL) yielded thick rod-shaped crystals which were washed with diethyl 

ether and dried in vacuo (10.1 mg, 86%). νmax (neat, cm-1) 1302 (s, N-O), 1380 (s, N-O), 

1410 (m, CH2), 1529 (w, C=C), 1589 (w, C=C). Found 21.4, 1.5, 16.3, C9H8N6O6Ag 



requires C 21.1, H 1.6, N 16.4%.  

{[Ag(dpzm)]SO3CF3}n (2) 

AgSO3CF3 (30 mg, 0.12 mmol) and dpzm (30 mg, 0.17 mmol) were combined 

according to the general procedure. The resulting precipitate was isolated as a white 

solid (36 mg, 72%) Found: C 28.3, H 1.9, 13.0, C10H8N4S1O3F3Ag1 requires C 28.0, H 

1.9, N 13.1. Slow vapour diffusion dichloromethane into a solution of the precipitate 

(10.5 mg) in DMSO (0.2 mL) yielded needle-shaped crystals (6.9 mg, 66%). νmax (neat, 

cm-1): 1026, 1153, 1250 (s, OTf−), 1409 (m, CH2), 1522 (w, C=C). Found: C 28.0, H 

1.8, 12.9, C10H8N4S1O3F3Ag1 requires C 28.0, H 1.9, N 13.1. 

{[Ag2(dpzm)3](ClO4)2}n (4a) 

AgClO4 (23.0 mg, 0.11 mmol) and dpzm (29.0 mg, 0.17 mmol) were combined 

according to the general procedure. The product was isolated as a white solid (33 mg, 

64%). Found C 31.0, H 2.3, N 15.9, C27H24N12Ag2Cl2O8 requires C 30.9, H 2.3, N 16.0. 

Slow vapour diffusion dichloromethane into a solution of the precipitate (11.5 mg, 0.02 

mmol) in DMSO (0.2 mL) yielded block shaped crystals (7.9 mg, 66%). νmax (nujol, cm-

1): 1091 (s, Cl-O), 1413 (m, CH2), 1523 (w, C=C), 1590 (w, C=C). Found C 34.8, H 

2.7, N 17.3, C27H24N12Ag2Cl2O8·¼(CH2Cl2) requires: C 34.4, H 2.6, N 17.6. 

{[Ag2(dpzm)3](PF6)2}n (4b) 

AgPF6 (41.0 mg, 0.16 mmol) and dpzm (42.0 mg, 0.24 mmol) were combined 

according to the general procedure. This afforded a white solid (62 mg, 75%).  Found C 

31.6, H 2.4, N 16.3, C27H24N12Ag2P2F12 requires C 31.7, H 2.4, N 16.5. Slow vapour 

diffusion of dichloromethane into a solution of the precipitate (11.3 mg 0.03 mmol) in 

DMSO (0.2 mL) yielded block shaped crystals which washed with ether and dried in 



vacuo (7.7 mg, 68%). νmax (neat, cm-1): 827 (s, P-F), 1404 (m, CH2), 1523 (w, C=C). 

Found C 31.8, H 2.3, N 16.2, C27H24N12Ag2P2F12 requires C 31.7, H 2.4, N 16.5. 

{[Ag4(dpzm)5](BF4)4}n (5) 

AgBF4 (32 mg, 0.15 mmol) and dpzm (40 mg, 0.23 mmol) were combined according to 

the general procedure. The product was isolated as a white solid (51 mg, 76%). Found: 

C 32.9, H 2.5, 16.9, C36H32N16Ag3B3F12·2(H2O) requires C 33.0, H 2.8, N 17.1. Slow 

vapour diffusion dichloromethane into a solution of the precipitate (11.6 mg) in 

acetonitrile (0.2 mL) gave block shaped crystals (10.2 mg, 89%). νmax (neat, cm-1): 1026 

(s, B-F), 1407 (m, CH2), 1523 (w, C=C). Found: C 32.5, H 2.7, N 15.8, 

C45H40N20Ag4B4F16·(CH2Cl2) requires: C 32.0, H 2.5, N 16.2. 

{[Ag3(dpzm)4](SbF6)3}n (6) 

AgSbF6 (46 mg, 0.13 mmol) and dpzm (35 mg, 0.20 mmol) were combined according 

to the general procedure. The product was isolated as a white solid (58 mg, 78%). 

Found: C 25.4, H 1.9, N 13.0, C36H32N16F18Ag3Sb3 requires: C 25.2, H 1.9, N 13.0. 

Slow vapour diffusion dichloromethane into a solution of the precipitate (16.4 mg) in 

DMSO yielded block shaped crystals (12.6 mg, 77%) νmax (neat, cm-1):  651 (s, Sb-F), 

1402 (m, CH2), 1525 (w, C=C). Found: C 25.4, H 1.8, 12.9, C36H32N16F18Ag3Sb3 

requires: C 25.2, H 1.9, N 13.0. 

Single crystal X-ray crystallography 

Single crystals were mounted in paratone-N oil on a plastic loop. X-ray diffraction data 

were collected at 150(2) K on an Oxford X-calibur single crystal diffractometer using 

Mo Kα radiation.  Data sets were corrected for absorption using a multi-scan method, 

and structures were solved by direct methods using SHELXS-97(35) and refined by 



full-matrix least squares on F2 by SHELXL-2013,(36) interfaced through the program 

X-Seed.(37) In general, all non-hydrogen atoms were refined anisotropically and 

hydrogen atoms were included as invariants at geometrically estimated positions, unless 

specified otherwise in additional details below. Figures were produced using the 

program CrystalMaker. Table 1 lists the X-ray experimental data and refinement 

parameters for the crystal structures. 

Full details of the structure determinations have been deposited with the 

Cambridge Crystallographic Data Centre as CCDC 1409035-1409040 (1, 2, 4a, 4b, 5, 

and 6, respectively). Copies of this information may be obtained free of charge from 

The Director, CCDC, 12 Union Street, Cambridge CB2 1EZ, U.K. (fax, +44-1223-336-

033; e-mail, deposit@ccdc.cam.ac.uk). 
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Table 1. X-ray experimental data for 1 - 4. 

Compound 1 2  4a 4b  
Empirical formula  C9H8N6Ag2O6 C10H8N4AgF3O3S  C29H28Ag2Cl6N12O8 C27H24N12Ag2P2F12  
Formula weight  511.95  429.13   1101.07  1022.26   
Crystal system  Monoclinic  Monoclinic   Monoclinic  Monoclinic   
Space group  C2/c  P21/n   C2/c  C2/c   
a (Å)  12.3493(6)  9.1202(5)   22.985(3)  22.771(2)   
b (Å)  9.1971(4)  11.1131(5)   20.8148(17)  21.3119(12)   
c (Å)  12.8938(7)  14.1599(7)   18.492(2)  19.0100(18)   
α (º)  90  90   90  90   
β (º)  109.706(5)  104.644(5)   118.116(18)  118.499(13)   
γ (º)  90  90   90  90   
Volume (Å3)  1378.68(12)  1388.54(12)   7803.1(15)  8107.5(11)   
Z  4  4   8  8   
Density (calc.) (Mg/m3)  2.466  2.053   1.875  1.675   
Absorption coefficient (mm-1)  2.884  1.654   1.480  1.137   
F(000)  984  840   4368  4016   
Crystal size (mm3)  0.34×0.45×0.71  0.13×0.20×0.50   0.24×0.27×0.35  0.22×0.30×0.38   
θ range for data collection (º)  2.82 to 29.34 2.95 to 29.38   2.50 to 29.32  2.63 to 29.41   
Reflections collected  7674  15780   18352  46140   
Observed reflections [R(int)]  1702 [0.0582]  3408 [0.0437]   9057 [0.0464]  9949 [0.0671]   
Goodness-of-fit on F2  1.087  1.061   1.041  1.088   
R1 [I>2σ(I)]  0.0272  0.0340   0.0604  0.0715   
wR2 (all data)  0.0702  0.0878   0.1748  0.1904   
Largest diff. peak and hole (e.Å-3)  0.690 and -0.558  1.061 and -0.900   1.673 and -1.635  1.400 and -0.946   

 

  



Table 1 (cont’d). X-ray experimental data for 5 and 6. 

Compound 5 6 
Empirical formula  C50H50N20Ag4B4F16Cl10 C37H34N16Ag3Sb3F18Cl2  
Formula weight  2064.32  1804.56  
Crystal system  Monoclinic  Orthorhombic  
Space group  P21/c  Pca21  
a (Å)  24.4586(5)  20.2850(10)  
b (Å)  12.1823(2)  22.8168(8)  
c (Å)  25.8229(6)  11.9863(5)  
α (º)  90  90  
β (º)  103.108(2)  90  
γ (º)  90  90  
Volume (Å3)  7493.8(3)  5547.7(4)  
Z  4  4  
Density (calc.) (Mg/m3)  1.830  2.161  
Absorption coefficient (mm-1)  1.477  2.681  
F(000)  4048  3432  
Crystal size (mm3)  0.17×0.29×0.54  0.18×0.25×0.32  
θ range for data collection (º)  2.57 to 29.24  2.63 to 29.27  
Reflections collected  85154  34878  
Observed reflections [R(int)]  18419 [0.0426]  12724 [0.0375]  
Goodness-of-fit on F2  1.028  1.040  
R1 [I>2σ(I)]  0.0544  0.0374  
wR2 (all data)  0.1493  0.0875  
Largest diff. peak and hole (e.Å-3)  1.501 and -1.848  1.026 and -0.948  

 

 



Results and Discussion 

Synthesis of coordination polymers 

Given the prevalence of coordination polymers incorporating pyrazine as a bridging 

ligand,(3, 39-40) we initially undertook reactions of the tetradentate dpzm ligand with a 

selection of 1st row transition metals expecting the ligand to chelate an individual metal 

centre and bridge to two others.  However, due to the reactive methylene hinge 

decomposition of the dpzm was observed with a wide range of metal salts.  In one 

instance, a small selection of crystals suitable for X-ray crystallography were obtained 

from a reaction of dpzm with Cu(BF4)2 in methanol; single crystal X-ray analysis 

revealed a discrete ML assembly of an octahedral Cu(II) centre and di(pyrazin-2-

yl)methanediol (dpzmdOH), identical to a previously reported structure by Mak and 

colleagues (who utilized di-2-pyrazinylketone in a similar reaction with copper(II)).(41) 

Oxidation of di-2-pyridylmethane (dpm) has also been reported to occur under similar 

conditions with copper(II) nitrate, yielding a M6L4 cluster composed of Cu(II) and 

di(pyridin-2-yl)methanediol.(42) 

To overcome the issues with the reactivity of dpzm, attention was shifted 

towards silver(I), which, as described earlier, has rich coordination chemistry and does 

not promote the oxidation of active methylene compounds.(42) Reaction of dpzm with 

AgNO3 in methanol resulted in an immediate precipitation of a coordination polymer 

which analysed as [Ag3(dpzm)2(NO3)2]·¾H2O. This M3L2 species was found to be 

soluble in DMSO, and recrystallisation by slow vapour diffusion of DCM into a 

solution of the polymer in DMSO yielded large block crystals [Ag2(dpzm)(NO3)2] (1) 

in 86% yield that were suitable for X-ray crystallography (Scheme 1). Formation of 1 

was further supported by the characteristic NO3
−

 stretches at 1302 and 1380 cm-1. 

Similarly, a series of coordination polymers could be obtained by reacting different salts 



of silver(I) with dpzm (Scheme 1). In all cases, combining the metal salt and ligand in 

methanol produced an immediate precipitate which was isolated and analysed. Reaction 

of AgOTf with dpzm gave a precipitate of a 1:1 metal-to-ligand species. 

Recrystallisation yielded large crystals with a formula of [Ag(dpzm)]OTf (2) as 

determined by X-ray crystallography. The formula obtained by C H N analysis was in 

agreement with this. A similar 2D structure ([Ag(dpzm)(ClO4)] (3)) has previously 

been reported as the product of a transformation of a porous 3D sodalite coordination 

polymer [Ag(dpzm)(DMSO)]ClO4.(32) This material could also be prepared directly by 

slow evaporation of a CH3CN/H2O mixture.  

N

N N

N

AgNO3 i
[Ag2(dpzm)(NO3)2]Ag3L2

Ag2L3

ii [Ag(dpzm)](ClO4)

AgOTf
AgL i

[Ag(dpzm)](OTf)

1

2

  
dpzm = 

L
i

[Ag2(dpzm)3](X)2

AgClO4
 or

AgPF6

X
 = 

ClO4
  4a

X
 = 

PF6
  4b

AgBF4 Ag3L4 [Ag4(dpzm)5](BF4)4

AgSbF6 Ag3L4 [Ag3(dpzm)4](SbF6)3

iii

i

5

6

3

 

Scheme 1. All initial reactions undertaken in methanol. Crystals of 1 - 6 obtained by: i) 

slow vapour diffusion of DCM into DMSO; ii) slow evaporation, CH3CN/H2O; and, iii) 

slow vapour diffusion of DCM into CH3CN. Compound 3 has been previously reported 

as the product of a 3D to 2D transformation.(32) 

 



Unlike coordination polymers 1 and 3, for the reactions to prepare coordination 

polymers 4a and 4b the Ag2L3 metal-to-ligand ratio obtained following initial 

precipitation of the product was maintained upon recrystallisation. Slow vapour 

diffusion of DCM into a DMSO solution of the Ag2L3 precipitate gave crystals suitable 

for X-ray crystallography of two related complexes, [Ag2(dpzm)3(ClO4)2] (4a) and 

[Ag2(dpzm)3(PF6)2] (4b), in 66% and 68% respectively. Formation of these complexes 

was supported by C H N analysis and IR spectroscopy. To further explore the effect of a 

non-coordinating anion, two more coordination polymers were formed by reacting 

AgBF4 or AgSbF6 with dpzm. In the case of AgBF4, the precipitate formed analysed 

with a Ag3L4 composition, and recrystallisation of this material gave the M4L5 complex 

[Ag4(dpzm)5(BF4)4] (5) in 89% yield. Reaction of AgSbF6 with dpzm in methanol also 

gave a Ag3L4 precipitate, and recrystallisation by slow vapour diffusion gave crystals of 

the complex [Ag3(dpzm)4](SbF6)3 (6) in 77% yield. The formation of 5 and 6 was 

supported by C H N analysis which was in agreement with the formula obtained from 

the crystal structures, while IR spectroscopy revealed the characteristic stretches 

corresponding to the respective anions. 

Single Crystal X-ray Crystallography 

Crystal structure of 1 

Coordination polymer 1 crystallises in the monoclinic space group C2/c with one 

silver(I) metal centre, one nitrate counter ion, and half of a molecule of dpzm in the 

asymmetric unit (Figure 2a). Compound 1 is a 1D polymer with a ladder-like structure 

and a 2:1 metal-to-ligand ratio. Instead of chelating to the silver(I) centre as expected, 

two dpzm ligands bridge between four symmetry related distorted trigonal planar silver 

atoms. Each silver(I) centre is coordinated by a pyrazine nitrogen donor from two 



different dpzm molecules, and a weakly coordinating nitrate. The Ag-N bond distances 

are 2.274(3) Å (Ag1-N1) and 2.306(3) Å (Ag1-N4) respectively. The obtuse angle 

between N4-Ag1-N1 is 168.84(10)°, owing to the weakly coordinating nitrate anion, 

which is situated 2.509(3) Å from the silver atom. This coordination motif gives rise a 

14-membered [2+2] dimetallocycle (Figure 2b) which extends to a 1D coordination 

polymer.  

 

Figure 2. The structure of 1. A perspective views of (a) the asymmetric unit showing 

the symmetry generated atom N4 as a blank sphere (selected bond lengths [Å] and 

angles [°]: Ag1-N1 2.274(3), Ag1-N4 2.306(3), Ag1-O1 2.509(3), N4-Ag1-N1 

168.84(10)°); ; b) the [2+2] metallomacrocycle; and c) the 1D ladder coordination 

polymer (the dashed lines represent the anion-π interactions between a nitrate oxygen 

atom and a pyrazine ring of dpzm). 

 

The 1D chain is stabilised by weak anion–π interactions between the oxygen 

atom of nitrate anion and the π system of a pyrazine ring of dpzm, with a distance of 

3.34 Å (O-centroid) (Figure 2c).(43-45) In addition, weak silver-arene π-interactions 



shield the silver atom, with the shortest Ag-C distance of 3.061 Å; the mean distance for 

such interactions has been reported to be 2.82 Å.(1) Within the [2+2] 

metallomacrocycle, the Ag – Ag separation is 4.74Å which is well outside the range of 

a typical Ag-Ag bond.(46) Within the adjacent polymer chains, there are longer bonds 

between the oxygen of a coordinated nitrate from one chain, and the silver(I) atom from 

another chain, with a distance of 2.65 Å. Besides this, there are no other notable 

interactions in the packing of the structure.  

Crystal structures of 2 (and 3) 

Compounds 2 and 3 are both 2D polymers with a 44 net structure; while 3 has 

previously been reported(32) it will be discussed here as there are a number of 

interesting comparisons to be made with 2. Even though 2 and 3 have the same overall 

structure, subtle differences exist in the coordination of the ligand and the 

supramolecular interactions of the respective anions. Both structures crystallise in 

primitive monoclinic space groups and contain one molecule of dpzm, a silver(I) atom, 

and one counter anion in the asymmetric unit (Figure 3).  

Compound 2 crystallises in the space group P21/n and contains a weakly 

coordinating triflate anion which is located 2.637(3) Å from the silver atom. The silver 

centre is essentially four-coordinate and has a distorted tetrahedral geometry (Figure 3a, 

however, with consideration of a long Ag1-O1 bond from the triflate anion, the silver(I) 

centre approaches a square pyramidal geometry (τ = 0.2; τ is an index of trigonality for 

5-coordinate metal centres where τ = (α-β)/60, α is the largest angle around the metal 

centre and β is the second largest).(47) The coordination sphere is composed of one 

chelating dpzm molecule and two symmetry related N-donors (N4 and N14). As 

previously noted, 3 crystallises in the space group P21/c and contains a non-



coordinating perchlorate anion, which is located 4.385(5) Å from the nearest silver 

atom. In absence of coordinative interactions from the anion, the silver(I) centre possess 

a distorted tetrahedral, with a wide range of angles (85.79(12) - 148.04(12)°). The 

atoms in the asymmetric unit are similar to that of 2, aside from the presence of a water 

solvate molecule, located 2.88 Å from the Ag(I) atom. In accommodating this quite 

distorted tetrahedral geometry, the donors N1 and N11 bond with distances of 2.262(3) 

and 2.454(3) Å to the silver(I) centre respectively. This is in contrast to 2, which 

contains more consistent bond lengths from these two donors, at 2.436(3) and 2.402(3) 

Å respectively.  



 

Figure 3. Perspective views of a) the asymmetric unit of 2, showing the weakly 

coordinating triflate anion, denoted by the dashed bond (selected bond lengths [Å] and 

angles [°]: Ag1-N4 2.345(3), Ag1-N14 2.387(3), Ag-O1 2.637(3), N1-Ag1-N11 

81.66(10), C2-C1-C21 112.3(2)); and b) the asymmetric unit of 3 (selected bond lengths 

[Å] and angles [°]: Ag1-N4 2.263(3), Ag1-N14 2.432(4), N1-Ag1-N11 85.79(12), C2-

C1-C21 113.4(3)). For each structure the symmetry generated atoms N4 and N14 are 

shown as hollow spheres. Perspective view of the packing of c) 2 along the 101 plane, 

showing the eclipse of the puckered layers and d) a perspective view of 3 along the a 

axis, showing the π-stacking between the staggered layers (dotted lines, hydrogen atoms 

removed for clarity). Illustrations of the configuration of the 2D layers in e) 2 and f) 3. 



The hexagonal units represent the pyrazine rings of dpzm and the blue circles represent 

Ag(I) centres. 

 

In the packing of the structures, both coordination polymers accommodate their 

respective anions in cavities formed between the puckered 2D layers. However, 2 

possesses eclipsed layers, while in the structure of 3 the 2D sheets are staggered 

(Figures 3c and 3d). In the structure of 2, the triflate anion shows weak C-H···O 

hydrogen bonding interactions with the dpzm ligand. These occur between an oxygen 

atom of the triflate anion and H6 of a pyrazine ring of dpzm (2.34 Å, 130.7°). The 

triflate anion also participates in weak anion-π interactions, with distances of 3.15 and 

3.33 Å to the centroids of two separate pyrazine rings. These weak interactions stabilise 

the eclipsed layers of 2. In contrast, the ClO4
− anion of 3 does not possess any notable 

hydrogen bonding or anion-π interactions. Instead, the most prominent secondary 

interaction is π-stacking which occurs between two offset pyrazine rings of two separate 

2D layers. The centroid-centroid distance is 3.52 Å, which is relatively short and thus a 

strong interaction.(48)  

Although 2 and 3 both possess a 44 net structure, the connectivity of the ligand is 

quite different between the respective structures. Figures 3e and 3f illustrate the 

connectivity of the two coordination polymers. In the structure of 2, two types of four-

connecting windows make up the net; one containing two chelating dpzm molecules, 

while the other only bridging pyrazine moieties. In contrast, the windows of 3 are all 

alike; each four-connecting unit contains one chelating dpzm molecules, and two 

bridging pyrazine moieties. 

Crystal structures of 4a and 4b 

The 3D coordination polymers 4a and 4b contain pseudo-octahedral silver(I) metal 



centres and thus can be best thought of as pseudo-cubic lattice (Figure 4). Compound 4a 

crystallises in the monoclinic space group C2/c and the asymmetric units contains three 

molecules of dpzm, one square pyramidal silver(I) centre (τ = 0.11), two octahedral 

silver(I) atoms (on special positions), two perchlorate anions, and two dichloromethane 

solvate molecules. The three silver(I) atoms in the asymmetric unit are 

crystallographically and chemically unique. The square pyramidal silver(I) centre (Ag1) 

is coordinated by one chelating dpzm ligand, and three nitrogen atoms from two 

separate molecules of dpzm. The nitrogen atom of another pyrazine donor (N34) is well 

outside the range for a Ag-N bond (3.98 Å, Figure 4b), but adopts the position of a 

potential sixth donor that could give an octahedral geometry to Ag(1). The other two 

silver(I) centres (Ag2 and Ag3) are chelated by two symmetry related dpzm molecules, 

and further coordinated by two symmetry related pyrazine N-donors. In the case of Ag2 

(Figure 4c), two N-donors coordinate with a distance of Ag2-N31 2.339(5) Å, which is 

in the range of a normal Ag-N bond, while the other four N-donors coordinate with 

bond lengths outside this range; Ag2-N21 is 2.635(5) Å and Ag2-N4 2.694(5) Å. Ag3 

also possesses quite long coordination bonds; Ag3-N14 2.578(6) Å and Ag3-N41 

2.789(5) Å. If these are considered as weak bonds then Ag2 and Ag3 possess an 

octahedral geometry.  



 

Figure 4. The structure of 4. Perspective views of a) the asymmetric unit of 4a, 

showing the three distinct silver(I) atoms (disordered dichloromethane solvate 

molecules removed for clarity); b) the coordination sphere of Ag1 (selected bond 

lengths [Å] and angles [°]: Ag1-N1 2.413(5), Ag1-N11 2.432(5), Ag1-N24 2.400(5), 

Ag1-N44 2.448(5), N1-Ag1-N11 83.82(17)); c) the coordination sphere of Ag2 

(selected bond lengths [Å] and angles [°]: Ag2-N21 2.635(5), Ag2-N31 2.339(5), Ag2-

N4 2.694(5), N21-Ag2-N31 80.35(16)); and d) the coordination sphere of Ag3 (selected 

bond lengths [Å] and angles [°]: Ag3-N14 2.578(6), Ag3-N41 2.789(5), Ag3-N51 



2.312(5), N41-Ag3-N51 82.09(16)). e) A perspective view of the net in 4a and 4b and . 

views of f) 4a and g) 4b along the b axis (disordered dichloromethane solvate molecules 

and hydrogen atoms omitted for clarity). 

 

Compound 4b also crystallises in the monoclinic space group C2/c and contains 

a similar composition of atoms in the asymmetric unit, including three 

crystallographically and chemically unique silver (I) centres. In comparison to 4a, the 

structure 4b differs only subtly in bond lengths due to the larger PF6
− anion. In this 

structure, the square pyramidal silver(I) centre is disordered over two positions in a ratio 

of 95:5. Two pseudo octahedral silver(I) centres are present which also contain varying 

bond lengths from surrounding pyrazine donors, ranging from 2.297(6) to 2.776(6) Å. 

In the structures of both 4a and 4b, the square pyramidal silver(I) ion links to 

five octahedral silver(I) centres extending to a 3D pseudo-cubic lattice (Figure 4e).(49) 

Both structures contain relatively small 1D channels along the b axis, which are 

occupied by counter-ions and disordered dichloromethane solvate molecules (Figure 4f 

and 4g). There are no unusually short distances between the ClO4
− anion and 

surrounding atoms in 4a, as the anion is situated approximately at the centre of the 

cubic pore. In 4b however, there is a notable hydrogen bonding interaction between an 

aromatic hydrogen of dpzm and a fluorine atom of the PF6
− anion, with a H···F 

distance of 2.29Å. Otherwise, there are no unusually short anion-π interactions in these 

two coordination polymers.  

Crystal structure of 5 

3D coordination polymer 5 crystallises in the monoclinic space group P21/n and 

contains four crystallographically unique silver(I) centres in the asymmetric unit. Five 

molecules of dpzm, four BF4
− counter-ions, and five disordered dichloromethane 



solvate molecules are also included in the asymmetric unit. Like the previous examples, 

the dpzm ligand both chelates and bridges silver(I) metal centres. The 3D network in 

this instance is composed of two distorted square pyramidal silver atoms (Ag1 τ = 0.12, 

Ag2 τ = 0.11), one octahedral silver(I) atom (Ag3) and one distorted tetrahedral silver(I) 

(Ag4). Ag1 is chelated by two molecules of dpzm, and coordinated by one symmetry 

related pyrazine donor (Figure 5a). Ag2, on the other hand, is chelated by only one 

dpzm ligand, and further coordinated by three N-donors of two separate dpzm 

molecules (Figure 5b). The octahedral silver atom (Ag3) is chelated by two dpzm 

ligands and further two pyrazine N-donors, one which is symmetry related. Notably, 

Ag3 (Figure 5c) contains one long Ag-N bond from each chelating dzpm ligand, at 

2.628(4) Å and 2.758(4) Å.  In contrast, the distorted tetrahedral silver atom Ag4 is 

composed of four monodentate pyrazine N-donors with varied N-Ag-N angles 

(98.26(15) – 152.41(16)°) (Figure 5d). Interestingly, a dichloromethane molecule 

appears to bridge Ag1 and Ag4 with the chloride atoms located 3.04 Å and 3.08 Å from 

the two atoms respectively. While this is somewhat unusual dichloromethane has been 

previously observed to act as a bridging ligand and a number of examples have been 

reported.(50, 51) 

The four-, five- (two), and six-connecting metal nodes give rise to a 3D network 

(Figure 5e).(52) In the packing of the structure, BF4
− anions and DCM solvate 

molecules occupy the space of the rectangular shaped channels along the b axis. (Figure 

5f) Channels are also present along the a axis, and are occupied only by DCM 

molecules. When considering van der Waals radii, these pores span 4.3 × 3.9 Å. The 

BF4
− anions exhibit relatively weak hydrogen bonding interactions with molecules of 

dpzm, but none of these are unusually short distances. In addition, no specific 



interaction exist between the anion and the silver(I) atoms, with the shortest Ag-F 

distance being 4.29 Å. 

 

Figure 5. Structural detail for 5. (a) The coordination sphere of Ag1, showing the weak 

interaction with a dichloromethane solvate molecule (selected bond lengths [Å] and 

angles [°]: Ag1-N1 2.512(5), Ag1-N11 2.367(5), Ag1-N21 2.520(6), Ag1-N31 

2.411(5), Ag1-N44 2.392(4), Ag1-Cl12 3.04, N1-Ag1-N11 78.32(19), N21-Ag1-N31 

83.33(18)). b) The coordination sphere of the octahedral atom, Ag2 (selected bond 

length [Å]: Ag2-N54 2.544(5)). c) The coordination sphere of Ag3 (selected bond 



lengths [Å]: Ag3-N71 2.626(5), Ag3-N94 2.628(4), Ag3-N101 2.759(4)). d) The 

coordination sphere of Ag4, showing the weak interaction with a dichloromethane 

solvate molecule (selected bond lengths [Å]: Ag4-Cl13 3.08). e) A view of the 3D net 

of 5 along the b axis. Views of 5 along the f) b axis and g) a axis, showing the channels 

with the dichloromethane molecules removed (hydrogen atoms omitted for clarity). 

Crystal structure of 6 

Coordination polymer 6 crystallises in the orthorhombic space group Pca21 and is 

composed of the dpzm ligand and AgSbF6 in a 4:3 ratio. In the asymmetric unit, four 

molecules of dpzm bridge between and chelate three crystallographically unique 

silver(I) metal centres, two with square pyramidal geometries (Ag1 τ = 0.13, Ag2 τ = 

0.02 ) and one as pseudo-octahedral centre (Ag3). Two chelating dpzm ligands and one 

monodentate pyrazine donor make up the coordination sphere of Ag1 (Figure 6a), while 

Ag2 is also coordinated by five pyrazine N-donors, though only two from a chelating 

dpzm ligand (Figure 6b). Ag3 has a similar composition to that of Ag2 and can also be 

considered square pyramidal, although a longer interaction with an additional pyrazine 

N-donor located 3.006(6) Å from the silver centre completes an octahedral geometry 

(Figure 6c).  



 

Figure 6. Details of the structure of 6. a) Coordination sphere the square pyramidal Ag1 

atom (selected bond lengths [Å] and angles [°]: Ag1-N1 2.549(5), Ag1-N11 2.362(6), 

Ag1-N24 2.386(6), N1-Ag1-N11 79.09(17)). b) The coordination sphere of the square 

pyramidal Ag2 atom (selected bond lengths [Å] and angles [°]: Ag2-N34 2.562(5), 

Ag2-N41 2.349(5), Ag2-N51 2.416(5), N41-Ag2-N51 79.09(17)). c) Coordination 

sphere of the octahedral Ag3 atom (selected bond lengths [Å] and angles [°]: Ag3-N61 

2.548(6), Ag3-N71 2.433(5), Ag3-N74 3.006(6), N61-Ag3-N71 77.52(19)). Views of 6 



along the d) c axis and e) the b axis (dichloromethane solvate molecules and hydrogen 

atoms omitted for clarity). f) A view of the net in 6, with two distorted rectangles 

highlighted. 

 

The 5- (two) and 6-connecting Ag(I) nodes comprise a complicated 3D net, 

composed of square and distorted six-membered rectangular windows (Figure 6f).(53) 

The undulating pattern of the Ag(I) centres can be seen along the c axis, while along the 

b axis square-shaped channels are occupied by SbF6
− anions (Figure 6 d, e). No obvious 

anion-π interactions are present, and no unusually short distances exist between the 

anions and the framework of 6. The most notable is a weak hydrogen bonding 

interaction occurs between a fluorine atom of a SbF6
− anion and an aromatic hydrogen 

of dpzm with a C-H···F distance of 2.47 Å. 

Discussion of the structures 

The dimensionality of the coordination polymers investigated can be related to the 

coordination strength of the counter-ions employed. A 1D coordination polymer was 

formed with NO3
−, while with the weaker coordinating anion, OTf−, a 2D polymer was 

yielded. On the other hand, non-coordinating anions such as ClO4
−, PF6

−, BF4
−, and 

SbF6
− all favoured 3D close-packed coordination polymers (excepting perchlorate 

which also allows a 2D material to form). Interestingly, three and four coordinate 

silver(I) centres were observed in the 1D and 2D structures, while the 3D assemblies 

possessed a combination of five and six-coordinate silver(I), showcasing the flexible 

coordination number of silver(I). 

We have previously shown that the inert nature of the methylene hinge 

facilitates crystal-to-crystal breathing in 3D sodalite materials.(32, 33) Of interest for 

this series of close-packed systems was the effect of the hinge on structures of these 



materials in comparison to topologically related pyrazine based coordination polymers.  

Aside from acting as the 'rungs' of the ladder in 1, the methylene hinge of dpzm does 

not dramatically modify the coordinating mode expected for pyrazine. 

The structures of 2 and 3 compare well with other 2D polymers formed with 

silver(I) and related di-2-pyrazinyl ligands.(28-30) In particular, these structures more 

closely resemble the coordination polymer formed with AgOTf and di-2-

pyrazinylmethanediol (dpzmdOH, Figure 1) which forms a 44 net,(28) containing 

triflate counter-ions situated in between the eclipsed and undulating sheets, similar to 

that observed for 2. In this example, the hydroxyl groups of di-2-pyrazinylmethanediol 

were not engaged in coordination, though other structures were also reported where 

coordination of these donors was observed.(28) As the methylene spacer of dpzm does 

not engage in coordination, structures 2 and 3 also compare favourably with 

coordination polymers of the classical bridging ligand, pyrazine. Carlucci and 

colleagues reported the polymeric structure [Ag(pyz)2]PF6 (pyz = pyrazine), which 

consist of 2-D undulating sheets, separated by non-coordinating PF6
− anions.(27) The 

staggered 2-D sheets of [Ag(pyz)2]PF6  are very similar to 3, and the only difference lies 

in the covalent connection via the methylene hinge of two pyrazine rings. 

In contrast to the 1D and 2D assemblies formed with weakly coordinating 

anions (NO3
− and OTf−), non-coordinating anions (ClO4

−, PF6
−, BF4

−, and SbF6
−) favour 

3D assemblies of Ag(I) and dpzm. The conditions in forming all but one of these 

assemblies (3) involved slow vapour diffusion of DCM into either a DMSO or CH3CN 

solution of the MxLy precipitate. Thus, the types the metal-to-ligand ratios and types of 

assemblies formed were primarily influenced by the size and shape of the non-

coordinating anion; the ClO4
− (55 Å3) and PF6

− (75 Å3) anions gave isomorphous 

structures, while the slightly smaller BF4
− anion (53 Å3) and the larger SbF6

− (85 Å3) 



anions induced different 3D structures under these conditions. The distorted cubic 

lattices of 4a and 4b are comparable to the perfect cubic lattice of the complex 

[Ag(pyz)3]SbF6 reported by Carlucci and colleagues.(25) In this structure, the SbF6
− 

anions were located at the centre of the cubic pores framed from the six-connecting 

octahedral silver(I) atoms. In contrast, all the 3D coordination polymers investigated in 

this study contained at least one long coordination bond, which is likely to be caused by 

the geometrical restrictions induced by the methylene hinge of dpzm.  

Conclusion 

Di-2-pyrazinyl methane (dpzm) distinguishes itself from other dipyrazinyl hinged 

ligands by the coordinatively inert methylene spacer. This appears to allow it to form 

coordination polymers with similar structures to those encountered with pyrazine, yet 

with distortions due to the hinge moiety restricting the angles between adjacent pyrazine 

rings. Unlike the slow crystallisation conditions used to form the previously reported 

porous sodalite materials, the silver(I) coordination polymers described here were 

crystallised by relatively rapid vapour diffusion conditions. These scenarios yielded 

crystals of coordination polymers which possessed either 1D, 2D, or 3D structures. 

These coordination polymers were close-packed, and their relatively small channels 

were occupied by anion guests. Although some of the close-packed coordination 

polymers compared well to previously reported assemblies with pyrazine, an evident 

feature of dpzm was the geometrical restriction of the methylene hinge, which was 

apparent in the long Ag-N bond lengths, particularly in the pseudo-cubic lattices of 4a 

and 4b. 
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weakly bonded dichloromethane molecule actually sits in one of these 



vacancies, connecting the 4-connecting centre to a 5-connecting centre).  If the 

dichloromethane is considered as a connection then the the structure can be 

considered to be composed of two 5-connecting nodes and two six conncecting 

nodes. Based on this analysis the structure is very similar to the above structure 

but lacks a pyrazine ring that spans but does not connect two of the nodes and 

this gives rise to the rectangular channels in the structure seen down the b-axis. 

(53) Again there are similarities to the structures of 4 and 5 with three different silver 

centres that are 5-connecting (two) and 6-connecting nodes. This combination of 

nodes gives rise to a structure very similar to 4 but lacks a pyrazine ring that 

spans but does not connect two of the nodes; this gives rise to the rectangular 

windows in the structure. 
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Figure SI 1. A perspective view of the asymmetric unit of 5 showing the 

crystallographically unique silver(I) centres (labelled), dpzm ligands, and anions. 

  



 

Figure SI 2. A perspective view of the asymmetric unit of 6 showing the 

crystallographically unique silver(I) centres (labelled), dpzm ligands, solvate molecules 

and anions. 

  



Additional Refinement Details 

Structure of 1: The refinement software suggested an extinction correction due to 

secondary diffraction (crystal dimensions). Adding the command ‘EXTI’ resulted in an 

improvement in GOF, R1, and wR2.  

Structure of 2: The hydrogen atoms of the water solvate molecule were 

successfully located in the difference map and DFIX restrains were used to maintain 

chemically sensible O-H bond lengths.  

Structure of 4a: The structure contains a disordered DCM molecule which was 

modelled over two positions. DFIX restrains were used to maintain chemically sensible 

C-Cl bond lengths and the carbon atoms of this disordered molecule were refined with 

isotropic displacement parameters.  

Structure of 4b: The structure contains a disordered silver(I) atom which was 

modelled over two positions. The structure has solvent accessible voids. These 

contained two highly disordered DCM molecules which could not be adequately 

modelled. The SQUEEZE routine of PLATON(38) was applied to the collected data, 

which resulted in significant reductions in R1 and wR2 and an improvement in the GOF. 

R1, wR2, and GOF before SQUEEZE routine: 24.48%, 61.07%, and 2.664; after 

SQUEEZE routine: 7.15%, 19.04%, 1.087. The contents of the solvent region calculated 

from the result of SQUEEZE routine equates to two DCM molecules per asymmetric 

unit.  

Structure of 5: The structure contains a disordered BF4
− anion which was 

modelled over two positions. The two boron atoms were refined with isotropic 

displacement parameters and DFIX restraints were used to maintain sensible B-F bond 

lengths. The structure also contains a disordered DCM molecule which was modelled 

over two positions. DFIX restrains were used to maintain chemically sensible C-Cl 



bond lengths and one of the two carbon atoms was refined with isotropic displacement 

parameters. Finally, one of the silver(I) atoms (Ag4) contained disorder which was 

modelled over two positions. 

 


	201612_embargo-hdl_98992-AM.pdf
	Introduction
	Experimental
	Materials and methods
	Synthesis
	General Procedure:
	{[Ag2(dpzm)(NO3)2]}n (1)
	{[Ag(dpzm)]SO3CF3}n (2)
	{[Ag2(dpzm)3](ClO4)2}n (4a)
	{[Ag2(dpzm)3](PF6)2}n (4b)
	{[Ag4(dpzm)5](BF4)4}n (5)
	{[Ag3(dpzm)4](SbF6)3}n (6)

	Single crystal X-ray crystallography

	Results and Discussion
	Synthesis of coordination polymers
	Single Crystal X-ray Crystallography
	Crystal structure of 1
	Crystal structures of 2 (and 3)
	Crystal structures of 4a and 4b
	Crystal structure of 5
	Crystal structure of 6

	Discussion of the structures

	Conclusion
	References and Notes
	201612_embargo-hdl_98992-Supportinginfo.pdf
	Additional Refinement Details



