PUBLISHED VERSION

Matthew Jennings, Loredana G. Marcu, and Eva Bezak
PET-specific parameters and radiotracers in theoretical tumour modelling
Computational and Mathematical Methods in Medicine, 2015; 2015:415923-1-415923-11

Copyright © 2015 Matthew Jennings et al. This is an open access article distributed under the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Originally published at:
http://doi.org/10.1155/2015/415923

PERMISSIONS

http://creativecommons.org/licenses/by/3.0/

@creative

commons

Attribution 3.0 Unported (ccey3.0)

This is a human-readable summary of (and not a substitute for) the license.

Disclaimer

You are free to:

Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

17 August 2016

http://hdl.handle.net/2440/99114



http://hdl.handle.net/2440/99114
http://doi.org/10.1155/2015/415923
http://creativecommons.org/licenses/by/3.0/

Hindawi Publishing Corporation

Computational and Mathematical Methods in Medicine
Volume 2015, Article ID 415923, 11 pages
http://dx.doi.org/10.1155/2015/415923

Review Article

Hindawi

PET-Specific Parameters and Radiotracers in

Theoretical Tumour Modelling

Matthew ]ennings,l’2 Loredana G. Marcu,'” and Eva Bezak'?

ISchool of Chemistry & Physics, University of Adelaide, Adelaide, SA 5000, Australia
Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
3Faculty of Science, University of Oradea, 410087 Oradea, Romania

Correspondence should be addressed to Matthew Jennings; matthew.jennings@health.sa.gov.au

Received 17 July 2014; Accepted 15 September 2014

Academic Editor: Iuliana Toma-Dasu

Copyright © 2015 Matthew Jennings et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The innovation of computational techniques serves as an important step toward optimized, patient-specific management of cancer.
In particular, in silico simulation of tumour growth and treatment response may eventually yield accurate information on disease
progression, enhance the quality of cancer treatment, and explain why certain therapies are effective where others are not. In
silico modelling is demonstrated to considerably benefit from information obtainable with PET and PET/CT. In particular, models
have successfully integrated tumour glucose metabolism, cell proliferation, and cell oxygenation from multiple tracers in order to
simulate tumour behaviour. With the development of novel radiotracers to image additional tumour phenomena, such as pH and
gene expression, the value of PET and PET/CT data for use in tumour models will continue to grow. In this work, the use of PET and
PET/CT information in in silico tumour models is reviewed. The various parameters that can be obtained using PET and PET/CT
are detailed, as well as the radiotracers that may be used for this purpose, their utility, and limitations. The biophysical measures
used to quantify PET and PET/CT data are also described. Finally, a list of in silico models that incorporate PET and/or PET/CT

data is provided and reviewed.

1. Introduction

Anatomic imaging modalities, particularly X-ray computed
tomography (CT) and magnetic resonance imaging (MRI),
have long been the standard tools for the accurate localization
of organs and lesions in radiation oncology. Today, they
play a routine role in three-dimensional treatment planning.
However, the effectiveness of structural imaging techniques
in determining metabolic or functional tissue information
is limited. Functional imaging has been demonstrated to
be invaluable for the initial diagnosis and staging of cancer
as well as the monitoring of therapy and the detection of
cancer recurrence [1]. Metabolic changes in tissue com-
monly precede the structural changes that are detected via
CT and MRI. Thus, imaging of metabolic changes may
enable the detection of malignant disease at earlier stages of
development [2]. In addition, the availability of functional
information is advantageous for cases in which there is poor

contrast between normal and malignant tissue when using
structural imaging. For example, for the initial staging of
lymphomas, the metabolic information provided by positron
emission tomography (PET) enables more accurate delin-
eation of the extent of nodal disease as compared with CT
and bone scans. Similarly and perhaps most notably, PET
demonstrates superior local staging capabilities for head and
neck cancers over both CT and MRI. FDG-PET alone has a
plethora of indications for a wide variety of malignancies [3].
Consequently, functional imaging modalities such as PET are
playing an increasingly important role in the management of
malignant disease.

PET scanning has progressed into widespread clini-
cal practice since its first commercialization in the late
1970s. For oncological PET studies, the most utilized and
extensively researched radiotracer is '*F-fluorodeoxyglucose
(FDG). FDG-PET has demonstrated superior accuracy over
conventional imaging modalities in multiple scenarios across



both the diagnosis and the staging of cancer [3, 4]. In a variety
of clinical settings, FDG-PET exhibits improved values of
sensitivity, specificity, or both. Examples of clinical scenarios
in which FDG-PET has demonstrated efficacy include the
evaluation of mass lesions, the staging and restaging of cancer,
the planning of radiotherapy treatments, the monitoring of
therapy, and the detection of cancer recurrence [3]. However,
the primary drawback of functional imaging is the lack of
anatomic information that it provides. This necessitates its
accompaniment with structural imaging for application in
clinical oncology [1].

In order to take advantage of their inherent benefits, the
combined use of both anatomic and physiologic imaging
modalities is optimal. The accurate structure localization
capabilities of CT complement the mapping of normal and
abnormal tissue function performed by PET. Because of this,
PET images are routinely read alongside CT images in order
to both distinguish and localize metabolic irregularities. In
the first instance, this has been achieved via the coregistration
of separately acquired PET and CT images using fusion
software, a technique which has especially proved to be
effective for brain imaging. However, coregistration of images
of other anatomical regions poses significant challenges [5].
Difficulties in the registration process primarily arise from
varying patient positioning between the two image sets.
Whilst such difficulties are minimal for brain scans, they
may be significant in other anatomical regions wherein there
may be substantial organ movement or deformation. In light
of this, the development and subsequent commercialization
of the PET/CT scanner in 2001 has generally addressed the
issues affecting the coregistration of separately acquired PET
and CT images [6].

The use of integrated PET/CT in oncologic imaging has
since become a widespread field of research, particularly
with the utilization of "*F-FDG. This combined modality
overcomes some of the drawbacks that are characteristic of
standalone PET scanning, namely, the significant presence of
noise in attenuation correction factors, the lengthy duration
of scans, and the absence of anatomic markers [7]. While the
vast majority of published research concerns standalone PET,
PET/CT has begun to show great promise across a multitude
of clinical settings [3]. Studies have shown significantly
improved accuracy in the staging of nonsmall cell lung cancer
with PET/CT over the separate performance of PET and CT
[8-10]. Some centres perform a series of PET/CT scans on
nonoperative head and neck cancer patients following either
radiation therapy or chemotherapy due to its indispensable
combined anatomical and functional information [3, 7, 11].
For patients with recurrent or metastasized thyroid cancer,
the localization capabilities of '*F-FDG-PET/CT can lead to
improved diagnostic accuracy [12]. Finally, the incorporation
of FDG-PET/CT data into the radiation treatment planning
process has repeatedly shown to improve target delineation
and enhance the therapeutic ratio via its increased cancer
staging accuracy [13]. The ongoing clinical evaluation and
further innovation of PET/CT, namely, via technological
improvements and the establishment of new tracers, will
continue to propel this technology into widespread use in
oncology [3].
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The significant interpatient variability in both tumour
behaviour and normal tissue response to cancer therapy
has prompted increasing demand for individualized treat-
ment planning. Simulations of radiobiological processes in
malignancies provide scope for the further optimization of
individual treatment plans and to ultimately improve patient
outcomes. The development of computer or in silico models
of these radiobiological processes is particularly beneficial
[14]. It is here in which PET and PET/CT, as noninvasive
functional imaging modalities, can play a crucial role [15-
17]. The aim of this work is to review the application and
effectiveness of PET and PET/CT for the in silico modelling
of tumours. In particular, it examines the various parameters
that can be determined via PET and PET/CT imaging along
with the assortment of radiotracers available for these pur-
poses. The biophysical quantities used to quantify PET and
PET/CT data, including SUV and compartmental models, are
assessed. Finally, an overview of the existing in silico models
that utilize PET or PET/CT data is provided.

2. Tumour Model Parameters Obtainable from
PET Imaging

With the objective of optimal, individualized treatment plan-
ning, many biological characteristics of a given tumour can be
considered for computer simulation. In the case of radiation
therapy, the proliferative potential of a tumour and its
radiosensitivity are of particular interest. Parameters which
describe tumour cell proliferation and repopulation charac-
teristics are useful for in silico modelling of tumour growth
and treatment response. Similarly, since it is well established
that tumour’s oxygenation level contributes significantly to
its radioresistance, modelling parameters that character-
ize tumour hypoxia and angiogenesis are also common.
Increasingly, in silico models have expanded to incorporate
additional contributing factors to tumour radiosensitivity,
including intracellular tumour pH, gene expression, and
cell-cycle simulation. The complexity of any given model
dictates the number of characteristics simulated, as well as the
accuracy with which each tumour characteristic is simulated.
Simpler models may use averaged, macroscopic measures of
a given tumour characteristic, while more complex models
may simulate a tumour and its behaviour at the microscopic,
molecular, and even atomic levels. Indeed, some of the
most accurate, contemporary models are “multiscale”; they
simulate tumour behaviour across multiple biological scales,
reconciling the macroscopic and microscopic levels [18].
Details of the various parameters utilized for tumour mod-
elling obtainable from PET and PET/CT data are provided
below.

2.1. Cell Proliferation. There are many approaches to mod-
elling cell proliferation but it is useful to separately con-
sider modelling at the macroscopic and microscopic scales.
At the macroscopic scale, tumours are commonly simu-
lated using continuum models. Using this approach, gross
tumour morphology and behaviour are modelled under
various environmental conditions and typically governed
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by a set of differential equations whose initial condi-
tions serve as input parameters [18]. Input parameters
include such quantities as cell density (both viable and
necrotic), cell volume fractions, and gross tumour prolif-
eration and metabolic rates [19]. Such parameters may be
gathered from PET/CT data, where a corresponding radio-
tracer can be utilized [20]. Details of various radiotracers
and the functional information they provide are given in
Section 3.

In contrast to continuum tumour models, discrete
tumour models developed at the microscopic scale simulate
individual cell behaviour. Their input parameters corre-
spondingly describe a set of biophysical rules applied to the
modelled cells and the diversity of these rules varies across
different models. Each cell is assigned an initial state and
its status is subsequently tracked throughout the simulation.
Consequently, discrete models directly simulate cell prolifer-
ation; a process which is mediated by input parameters such
as proliferative potential, cell-cycle positions, and durations
for different cell types, probability of cell division, cell loss
rates, and maximum tumour radius or cell number [19].
Patient-specific parameters such as tumour radius and prolif-
erating cells per voxel are directly obtainable from functional
imaging data [15].

2.2. Hypoxia. The adverse effects of tumour hypoxia on
patient outcomes following radiotherapy have been well
established. Indeed, hypoxia is often attributed to poor
tumour control probabilities in locally advanced head and
neck cancers, for which low oxygenation levels are common
[21]. Accordingly the simulation of oxygenation in tumours
has been a prolific area of research in the tumour modelling
community for more than 60 years [22]. The simulation
of tumour hypoxia varies greatly across different models;
the most complex models concurrently simulate oxygen
diffusion, oxygen consumption by tissue, and the interdepen-
dence of oxygen with tumour proliferation and vasculature
[23].

Oxygen information is generally modelled using an
analytic approach. That is, sets of differential equations are
used to describe oxygen diffusion and/or consumption rates
both during tumour growth and in response to treatment.
Even stochastic (discrete) tumour cell proliferation models
that incorporate oxygen information typically employ a com-
posite approach; oxygen and other substrate concentrations
are generally governed by continuous fields. Since the oxygen
distribution within a tumour is directly related to the extent
and nature of its vasculature, many tumour hypoxia models
incorporate blood vessel information into their simulations.
The most sophisticated models simulate angiogenesis (see
Section 2.3) and its effect on tumour hypoxia [16, 23, 24].

Simulated oxygen distributions are typically quantified
using partial oxygen tension or pO, values. Thus, for the
successful simulation of tumour hypoxia, realistic initial pO,
conditions must be set. In order to categorize the oxygen
status of tissue, binary approaches to oxygen modelling
establish a defined threshold pO, value below which the
region is considered to be hypoxic. More robust models estab-
lish a more detailed relationship between tumour growth

or treatment response and oxygen information and may
incorporate both oxygen diffusion and oxygen consumption
by tissue [23, 25]. Additional parameters of interest may be
included for oxygen effects, such as reoxygenation proba-
bility distributions and hypoxic thresholds for which cell
quiescence is initiated. Multiple studies have demonstrated
the utility of PET for obtaining pO, distributions for use in
patient-specific tumour models [16, 23, 26].

2.3. Angiogenesis. The extent and nature of tumour vascula-
ture significantly influence tumour growth and oxygen status.
Consequently, the simulation of angiogenesis serves as a
useful complement to models of tumour cell proliferation and
hypoxia. Likecell proliferation, models of tumour-induced
angiogenesis may be either continuous or discrete in nature.
More advanced models utilize both approaches for simulating
the various mechanisms involved in angiogenesis, such as
capillary sprout formation, endothelial cell migration, blood
flow, and vessel adaptation [19].

Input parameters related to vessel branching generally
include probabilities of random endothelial cell migration,
chemotaxis with tumour angiogenesis factor concentration
(especially vascular endothelial growth factor or VEGF),
and haptotaxis with fibronectin gradients [18]. The utility
of PET for the imaging of specific angiogenic markers,
such as «,f3; integrins and tumour expression of VEGE
has been demonstrated by multiple groups [28, 29]. To
date, tumour models of angiogenesis have traditionally not
incorporated angiogenesis-specific PET data. However, since
cellular oxygenation and tumour vasculature are intimately
related phenomena, hypoxia-specific PET data has been
utilised in models of tumour vasculature [16, 23]. Specifically,
the value of PET information for the conversion of oxygen
maps into capillary density maps has been demonstrated.
The potential of angiogenesis-specific PET-based imaging for
input in modelling the temporal development of vasculature
or angiogenesis is well understood and will develop with
ongoing studies [16].

2.4. pH. Though the intracellular pH of solid tumours is
maintained in a range similar to that of normal cells, the
extracellular pH of solid tumours is commonly acidic. The
increased glucose metabolism of solid tumours, assisted
by characteristically poor perfusion, is the most probable
cause of their low extracellular pH. This is because glucose
catabolism results in net acid production and insufficient
vasculature cannot remove excess acid from the extracellular
environment [30].

Perhaps the most compelling value of including pH
in tumour growth models arises from the acid-mediated
tumour invasion hypothesis. This suggests that tumour cells
develop phenotypic adaptations to the harmful effects of
acidosis during carcinogenesis, traits that are not present
in normal cells. Consequently, tumour cells are rendered
relatively impervious to the decreased pH in the tumour
microenvironment resulting from increased anaerobic gly-
colysis, which is otherwise toxic to normal tissue. Effectively
the tumour provides for itself a selective growth advantage
and a useful mechanism for invasion [31]. Investigation of
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TaBLE 1: PET Radiotracers whose data has been/the potential to be incorporated into in silico models.

PET radiotracer Functional characteristic

Corresponding tumour model parameters

Use in in silico models?

(i) Intracellular Volume Fraction (ICVF)

FDG Glucose metabolism Yes
(ii) Acid production rates”

FLT DNA replication Tumour cell proliferative rates (vector- or voxel-based) Yes

EMISO Hypoxia (i) Partial oxygen tension (pO,) Yes
(ii) Relative hypoxic fraction (RH)

Cu-ATSM Hypoxia Partial oxygen tension (pO,) Yes

pHLIP Acidosis Extracellular pH (pH,) Potential

Galacto-RGD Angiogenesis (i) e, B expression rate Potential

FDOPA Malignancy (i) L-DOPA activity Potential

FES Malignancy (iii) Oestrogen overexpression Potential

*The specificity of FDG to glucose metabolism provides in indirect measure of acid production rates in tumour cells, since anaerobic glycolysis is net acid

producing.

this phenomenon is particularly suited for in silico tumour
growth modelling and the role played by acid gradients in
triggering tumour invasion has been evaluated this way [31].
Excess H' ion concentration may be simulated in a con-
tinuum model utilizing reaction-diffusion partial differential
equations, where input parameters such as acid production
rate, reabsorption rate, and H" ion diffusion coefficients may
be obtained from measurement [32].

As with angiogenesis, in silico models incorporating
tumour pH have not utilized noninvasive PET data for input.
Though PET has been used for the measurement of pH since
the 1970s and was the first noninvasive in vivo pH meter,
it has historically been both an inaccurate and imprecise
measurement tool [30]. However, the development of novel
radiotracers that selectively target acidic tumours will enable
the incorporation of pH related PET data into in silico models
of tumour growth [33].

3. Radiotracers Used for Tumour Modelling

PET and PET/CT are able to image an increasing variety
of physiological phenomena. This versatility arises from
the ability to select a radiotracer that specifically targets
a particular mechanism. Additionally, the diversity of PET
tracers continues to expand with ongoing innovations in
radiopharmaceutical production. Today, radiotracers exist
for the imaging of metabolism, proliferation, perfusion,
drug/receptor interactions, and gene expression. Despite this
variety, the extent of PET data incorporated into in silico
tumour models has so far been limited to radiotracers specific
to glucose metabolism, cell proliferation, and hypoxia. There
is significant potential for the use of alternative radiotracers to
obtain additional functional information for in silico models
using PET. A list of radiotracers whose information has been
directly incorporated into in silico models as well as those that
show significant promise for such applications is provided in
Table 1.

3.1. FDG. "F-2-Fluoro-2-deoxy-glucose or FDG is by far
the most commonly used and extensively researched PET
radiotracer. Today, FDG-PET plays an important role in

oncology. It has been recommended for use as an imaging
tool additional to traditional radiological modalities in the
appropriate clinical setting. In particular, it has demonstrated
efficacy in the diagnosis, staging, unknown primary discov-
ery, and the detection of cancer recurrence [1].

Increased glucose consumption is a typical characteristic
of most cancers. In hypoxic regions, the Pasteur effect results
in the upregulation of anaerobic glycolysis and the GLUT 1
glucose transporter in tumour cells. However, even if oxygen
is plentiful, cancers undergo accelerated glycolysis. This
observation, called the Warburg effect, is widely attributed to
mutations in oncogenes and tumour suppressor genes [34].
Since FDG is a glucose analogue, it is a particularly suitable
radiotracer to measure the increased glucose utilization typ-
ical of cancers. Along with increased glucose consumption,
the upregulation of appropriate enzymatic activity further
amplifies FDG uptake in tumour cells.

The primary drawback of FDG-PET for oncologic imag-
ing is that FDG uptake is not specific to cancer. That is, FDG-
PET exhibits a poor level of specificity for certain applica-
tions. FDG uptake may be intense in benign diseases as well
as in areas of infectious disease and inflammatory tissue.
That is, there are many potential causes of false-positive PET
signals in oncologic imaging [1, 35, 36]. Conversely, some
malignant diseases do not exhibit high glycolytic activity.
Bronchioloalveolar carcinoma and carcinoid tumours are
examples of cancers for which false-negative signals may
occur for standalone FDG-PET imaging [35]. Combining
FDG-PET with other imaging modalities has served to
mediate this drawback somewhat; FDG-PET/CT has demon-
strated superior performance than standalone FDG-PET
in common cancers [37]. Additionally, the emergence of
novel radiotracers that target biochemical processes that are
more specific to cancer promises to overcome the relative
nonspecificity of FDG-PET in oncologic imaging.

Commensurate with the predominance of FDG as the
PET radiotracer of choice, metabolic information provided
by FDG-PET is often utilized in in silico models of both
tumour growth and treatment response [16, 20]. The specific
information employed from FDG-PET varies across such
models. Images may be used solely to identify existing
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cancerous tissue, particularly in simulations for the predic-
tion of tumour response to therapy [16]. Alternatively, glucose
metabolism data from FDG-PET can be quantitatively used
to simulate metabolic processes in predictive models of
tumour growth [20].

3.2. FLT. PET radiotracers specific to cell proliferation
are an effective alternative to those specific to glucose
metabolism, such as FDG. Of these tracers, '*F-3-fluoro-
3-deoxy-thymidine (FLT) is perhaps the most researched
and the most utilized. FLT-PET is typically a less sensitive
imaging modality than FDG-PET: the difference in FLT
uptake between normal and malignant tissues is usually less
pronounced than that for FDG [38]. However, FLT uptake
correlates very well with Ki-67, an index of cell proliferation.
Consequently, FLT-PET is useful for aiding in the grading of
tumours. The combined FLT-PET/CT modality has demon-
strated efficacy for the early prediction of treatment response
[39-41] as well as the assessment of cancer aggressiveness
[42]. The uptake of FLT in infectious or inflammatory tissue
is less than that of FDG and FLT has lower background
activity in the brain and thorax [43, 44]. Consequently, the
specificity of FLT-PET/CT exceeds that of FDG-PET/CT in
certain imaging applications [44].

The magnitude of FLT that is trapped in a tumour
cell is proportional to the amount of DNA/RNA synthesis
undertaken by the cell. Since the growth of malignant
tissue is intricately related to DNA replication, the degree
of FLT uptake is strongly correlated with proliferation rate.
Accordingly, FLT-PET data is particularly useful for patient-
specific tumour modelling, where proliferative rates are often
of paramount interest. A group led by Benjamin Titz at the
University of Wisconsin has correspondingly acquired cell
proliferation information from FLT-PET data for in silico
models of tumour growth and treatment response [15, 16].

3.3. FMISO. In an effort to develop accurate, noninvasive
measurement techniques of tumour hypoxia, a number of
PET radiotracers have been produced which irreversibly
bind to cells in poorly oxygenated conditions. Of these, '*F-
fluoromisonidazole (FMISO) is the most extensively studied
and clinically validated. FMISO uptake is inversely propor-
tional to O, level and perfusion does not restrict its delivery to
malignant tissue. Several studies have demonstrated FMISO-
PET to be a viable prognostic indicator of tumour response
to treatment [45].

FMISO-PET has not been universally adopted into rou-
tine clinical application because of a number of limitations
inherent in the radiotracer. Since it relies on passive transport
mechanisms, its uptake is relatively slow in hypoxic tumours,
usually requiring 2-4 hours to be selectively retained in the
target following injection [46]. FMISO-PET imaging also
exhibits relatively low tumour-to-background ratios, since
its binding to malignant, hypoxic cells is highly nonspe-
cific. Finally, considerable levels of unwanted, radioactive
metabolite products result from the nonoxygen dependent
metabolism of FMISO [45]. Improvements in the quantifi-
cation of hypoxia by modelling FMISO-PET dynamics, as

opposed to using the standardized uptake value (SUV) in a
binary manner, may aid in overcoming contrast limitations.
Several studies have demonstrated reasonable success in the
simulation of tracer transport and its application to tumour
models (see Section 5) [25-27].

3.4. Cu-ATSM. Alternative hypoxia-specific PET radiotrac-
ers have been developed in order to overcome the var-
ious limitations of FMISO. Several other nitroimidazole
compounds have been developed for this purpose [47]. In
1997, an alternative hypoxia PET tracer was proposed that
does not suffer from the undesirable radioactive residues
of nitroimidazoles. This tracer is Cu(ll)-diacetyl-bis(N4-
methylthiosemicarbazone) or Cu-ATSM [48]. Cu-ATSM has
evolved to become one of the most promising PET agents
for hypoxia imaging. It has demonstrably high hypoxic
tissue selectivity [45]. It is able to rapidly identify hypoxic
tissue with high tumour-to-background ratios, due to a
combination of small molecular weight, high cell membrane
permeability, rapid blood clearance, and prompt retention in
hypoxic tissues [45].

The effectiveness of Cu-ATSM for providing clinically
relevant tumour oxygenation information has been con-
firmed in multiple studies and its predictive value of tumour
behaviour and treatment response has been demonstrated
[49-51]. Perhaps unsurprisingly, it is a preferred radiotracer
for the determination of oxygenation information using PET
for incorporation into in silico tumour models [15, 16, 23].
For example, Titz and Jeraj chose a sigmoidal relationship
between the SUV of Cu-ATSM and local tissue oxygenation
[15], following the findings of Lewis et al. [52]. Using pretreat-
ment Cu-ATSM-PET spatial maps of tumour oxygenation,
it was demonstrated that lower oxygen levels resulted in
reduced treatment efficacy. However, the group did note
that further investigation into the quantitative relationship
between partial oxygen tension and Cu-ATSM uptake is
warranted.

3.5. Other Radiotracers. Although in silico models are yet
to incorporate PET or PET/CT information beyond glucose
metabolism, cell proliferation, and tumour oxygenation,
there is scope for the use of tracers that image additional
processes. Tumour acidosis arising from amplified glycolysis
is a common feature of cancers and is a likely trigger of
invasion into surrounding tissue [53]. Consequently, several
mathematical models, inclusive of tumour acidity, have been
developed to study the glycolytic phenotype and the tumour-
host interface [31, 54]. There is suggestive potential of PET
and particularly PET/CT for directly obtaining parameters
of interest for such models, including glucose metabolic
rate and acid production rates. One promising, novel PET
tracer that specifically targets acidosis is pH low insertion
peptide (pHLIP) [33]. pHLIP binds to acidic cell membranes
and has demonstrated ability to target areas of hypoxia
and carbonic anhydrase IX (CAIX) overexpression, an acid-
extruding protein [55].

As discussed in Section 2, the simulation of angiogenesis
is of significant interest for in silico tumour modelling.



Though parameters related to angiogenesis can be indirectly
obtained using hypoxia-specific PET-imaging, alternative
markers of angiogenesis can instead be targeted. For example,
vascular integrins are targeted by PET radiotracers contain-
ing the tripeptide sequence arginine-glycine-aspartic acid
(RGD) [28]. In particular, the «,f3; integrin is a receptor
related to cell adhesion and involved in tumour-induced
angiogenesis that can be imaged using radiotracers such as
"*F-Galacto-RGD [29].

In models that simulate specific tumour types, PET infor-
mation from alternative tracers might be useful. For example,
neuroendocrine tumours are typically characterised by an
increased L-DOPA decarboxylase activity [56]. The imaging
of advanced neuroendocrine tumours has been validated
with PET using '®F-dihydroxyphenylalanine (FDOPA) [57]
and may be of value in the modelling of these tumours.
Similar arguments may be made for the simulation of breast
cancers and the imaging of oestrogen receptor expression
using '°F labelled oestrogens such as '®F-fluoroestradiol
(FES) [58].

4. Biophysical Parameters Used in
PET and PET/CT

The integration of reliable imaging-based information into
in silico models of tumour growth and treatment response
greatly relies on the accurate and precise quantification of
imaging data. This is especially relevant for PET and PET/CT,
for which radiotracer uptake is dependent on a host of factors.
SUV is the most extensively used parameter clinically for the
analysis of PET tracers, but its high degree of sensitivity to
multiple variables can render the comparison of SUVs taken
at different times or between different centres to be extremely
difficult [59].

Details of the biophysical parameters used to quantify
PET and PET/CT data are provided below. Their applications
and limitations are discussed and compared, as well as the
various methods that have been developed to overcome the
potential pitfalls of a given measure. The present use of PET
and PET/CT quantification measures in in silico models of
tumour growth and treatment response is also discussed.

4.1. SUV. The standardized uptake value is the quintessential
parameter employed to analyse and quantify PET radiotracer
data. It is defined as follows:

radiotracer concentration in ROI
SUV =

L>
total injected activity/N g/mL, (1)

where the concentration is as measured with PET in kBq/mL,
ROL is the region or volume elements of interest, and N is a
factor normalizing for body weight, body surface area, or lean
body mass. The overall denominator has units kBq/g. The
radiotracer is commonly computed by scanning the patient
for a 5-15-minute interval after a predetermined period (e.g.,
1 hour) after radiotracer injection.

In general, SUV depends on the time between injection
and scanning as well as multiple image acquisition settings
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such as the reconstruction algorithm and scatter and atten-
uation corrections [59]. Its comparative value is hampered
by methodology differences, such as choice of normalization
factor and choice of max, mean, peak, or total SUV [60]. SUV
may also be confounded by biological mechanisms, such as
variations in plasma clearance before and after treatment and
plasma glucose concentration (in the case of FDG) [59].

Despite its limitations, SUV poses advantages over alter-
native quantification techniques such as compartmental
methods (see Section 4.2). It is the only method of PET
quantitative analysis that can be realistically employed for
routine clinical use, due to its sheer simplicity and the
efficiency of the associated scan protocols. In addition, the
effectiveness of SUV for the assessment of cancer therapy
response by comparing values for scans taken before and after
treatment has been extensively validated. This is particularly
true for FDG-PET, whose efficacy has been confirmed for
multiple cancer types [59]. Accordingly, in spite of its large
variation in some situations, the use of SUV is common
for the acquisition of metabolic information, proliferation
rates, and pO, values for use in in silico tumour models
(16, 20, 23].

4.2. Compartmental Models. Compartmental or kinetic
modelling (CM) is the “gold standard” of quantification
methods for PET data [59]. In CM, the exchange of the
PET radiotracer between a number of physiological entities
(called compartments) is simulated. These compartments
are homogeneous in nature and the tracer transport and
binding rates between them is modelled by a set of first-order
differential equations [61]. The set of equations are solved
numerically to obtain the rate constants, kinetic parameters
analogous to those outlines in Section 2, such as glucose
metabolic rates or blood flow [59].

Despite its accuracy and relative independence of con-
founding effects as compared to SUV, CM has the disad-
vantage of requiring a complex, time-intensive acquisition
protocol. Techniques with which the requisite scan protocol
complexity of CM can be overcome CM are an ongoing field
of research [62, 63]. In the case of radiotracers such as FDG
for which the use of SUV has been strongly validated (via
comparison with CM, in some cases), the added benefit of
employing CM techniques for PET analysis is likely to be
insubstantial [59].

However, in the case of FMISO-PET imaging of hypoxia,
the use of CM is warranted. Whilst FMISO can be used to
identify and image tumour hypoxia, it typically exhibits poor
tumour-to-background ratios using the standard SUV mea-
sure, generating highly variable results [25, 27]. Compart-
mental modelling of hypoxia imaging for dynamic FMISO-
PET data has shown great success in ameliorating this
problem, with particularly promising contributions from
Thorwarth et al. [25] and Wang et al. [27].

4.3. Hounsfield Units. The process of positron emission
tomography is based on the coincident detection of colinear,
511keV photons originating from an annihilation event. This
measurement may be affected by an interaction between one
or both of the photons and the attenuator prior to reaching
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the detectors. A colinear coincident event is consequently not
detected and may instead register as scatter coincidence or
no coincidence. To account for this signal loss, attenuation
corrections are performed during PET image reconstruction
in an effort to salvage the true radiotracer distribution. Until
the development of PET/CT attenuation correction in PET
was performed using a transmission scan taken immediately
prior to the imaging scan, effectively doubling the total scan
time. In modern PET/CT scanners, CT-based attenuation
correction of PET images can be performed using the imme-
diately available CT images. 511keV linear attenuation values
are obtained from the Hounsfield unit (HU) data provided
by the CT using an appropriate transformation scheme [64],
usually a bilinear relationship.

CT scanners convert attenuation coefficient distributions
u(x, y,z) into HU for display. Since attenuation is directly
proportional to attenuator density, the HU of a particular
voxel may be interpreted as the density of the object within
that voxel relative to that of water. Typical scans consist of
image noise within the range of 10-50 HU, corresponding to
a relative error of 1-5% [65]. Consequently, CT is a powerful
imager of tumour density. For oncologic scenarios in which
lesions and background tissues are characterized by similar
HU values, assessment with CT is facilitated by the use of
positive and negative contrast agents. Contrast enhancement
in PET/CT has been reported to improve lesion detection,
characterization, and localization in some clinical settings
[66-68].

Positive contrast agents within PET/CT may cause over-
estimation of PET attenuation with contrast-enhanced CT
based attenuation corrections. This can lead to artifacts
of apparently increased tracer uptake in regions of high
contrast concentration within the PET image. However, such
artifacts can often be attributed to an underlying vessel and
hence do not cause problems with image interpretation [65].
Furthermore, several research studies have confirmed the
clinical insignificance of this effect, since the typical SUV
measure is negligibly affected by contrast [69, 70].

5. Review of Computational and
Mathematical Models of Tumour Growth
and Prediction to Treatment Response
Based on PET Imaging Data

With the advances in technology, the current imaging modal-
ities offer a great variety of biological, biophysical, and clinical
parameters to be further studied and implemented into com-
plex tumour models. Computational modelling is an ever-
increasing area of research in tumour biology and therapy.
Depending on their design (ie., continuum or discrete)
models offer various levels of understanding of biological,
biochemical, and biophysical processes occurring in tumours
before and during treatment. Models are versatile in terms of
input parameters, equations used, phenomena simulated, and
end points. While never perfectly illustrating the biological
reality, models are valuable complements to kinetic analysis
of tumour growth and development, treatment outcome

prediction, patient selection, and important decision-making
towards personalized medicine.

There are a large number of computational and mathe-
matical tumour models that incorporate functional imaging
data in the scientific literature. This is particularly true for
PET and PET/CT. A detailed list is provided in Table 2, which
includes models of tumour growth, tumour characteristics,
and response to treatment. The aims of the models, the
corresponding imaging techniques used and physiological
parameters imaged, and the relevant group’s findings are
given.

Tumour growth models are an important initial step
when modelling treatment response. Using dual-phase CT
and FDG-PET imaging modalities, Liu et al. have developed
a tumour growth model for pancreatic cancers [20, 71]. They
have introduced the intracellular volume fraction (ICVF) as
biomarker for the estimation and evaluation of the model’s
parameters, based on longitudinal dual-phase CT images
measured on pre- and postcontrast images. SUV was used asa
semiquantitative measure of tumour metabolism (metabolic
rate), which was further related to tumour proliferation rate.
The model was validated by comparing the virtual tumour
with a real pancreatic tumour, in terms of average ICVF dif-
ference of tumour surface, relative tumour volume difference,
and average surface distance between the predicted tumour
surface and the CT-segmented (reference) tumour surface
[20].

Perhaps the vast majority of the models address the chal-
lenge of tumour hypoxia and neovascularization [15, 16, 23,
27]. The approach used in the models varies among research
groups. Given that compartmental models are great tools in
kinetic modelling of perfusion, diffusion, and pharmacoki-
netics of various tracers, they were chosen by some groups to
quantitatively estimate the levels of hypoxia in head and neck
tumours and also to assess the hypoxic distribution within the
tumour [25, 27]. Considering the controversies around SUV
and its correlation with the partial oxygen tension (pO,),
Thorwarth et al. came to a practical conclusion, whereby
compartmental kinetic models are more reliable for hypoxia
assessment than early static SUV measurements, due to the
low uptake of FMISO by severely hypoxic cells.

Experimental probability density functions were em-
ployed by other groups to simulate the direction and spatial
arrangement of microvascular tumour density, using patient-
specific PET imaging information [23]. The discovered cor-
relation between microvessel density and tumour oxygena-
tion levels (i.e., pO,) suggests that patient-based simulation
can contribute towards individualized patient planning and
treatment.

Hybrid models (or multiscale models) are often used
for complex assessment of tumour growth and behaviour
under therapy, due to their versatility and ability to integrate
mathematical/computational modelling with experimental
data on different physical scales. The hybrid model developed
by Titz and Jeraj is an example of this [15]. Depending on
the input parameters chosen in terms of relevance and reli-
ability, such hybrid models can predict, with high accuracy,
tumour response to various treatments. As illustrated in
Section 3, functional imaging and particularly PET imaging
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TABLE 2: Models of tumour growth and prediction to treatment response based on PET imaging data.

Aim of the model Imaging technique Model parameters Results/observations

[references] used

Spatial-temporal
characterization of
pancreatic tumour
growth and progression
(20]

Dual-phase CT and
FDG-PET

Models of tumour growth

Intracellular Volume Fraction (ICVF)
which reflects tumour cell invasion and
SUV used for determination of cell
metabolic rate, growth rate, cell motion:
diffusion and advection (for mass effect).

The model was successfully validated
against a real tumour using average ICVF
difference of tumour surface, relative
tumour volume difference & average
surface distance between predicted and
segmented tumour surface.

Evaluation of tumour
hypoxia in head and
neck tumours [25]

Simulation of tumour
oxygenation [26]

Estimation of tumour
hypoxia in head and
neck tumours [27]

Simulation of tumour
vasculature [23]

Dynamic FMISO-PET

Dynamic FMISO-PET

Dynamic FMISO-PET

Cu-ATSM PET and
contrast CT

Models of tumour characteristics

Tracer transport and diffusion model;
voxel-based data analysis used to
decompose time-activity curves into
components for perfusion, diffusion and
hypoxia-induced retention.

Model input parameters for steady-state
O, distribution: 2D vascular map, oxygen
tension and rate of oxygen consumption.
Binding rates of FMISO estimated and
spatial-temporal O, distribution found.
Probability density function was used to
model tumour vasculature to identify
hypoxic sub-regions.

Region of interest and arterial blood are
identified via PET. Values of kinetic
parameters (for oxic, hypoxic and
necrotic areas) are taken from
PET-scanned patient data.

Capillaries were simulated using
probability density functions
(micro-vessel density) and patient
imaging data. Capillary diameter was
modelled in conjunction with voxel size;
a relationship between vessel density and
pO, was employed.

Quantification of hypoxia; hypoxic
regions are spatially separated from blood
vessels; tracer uptake occurs in viable
hypoxic cells-only.

The kinetic model is more accurate than
static SUV values.

Hypoxic sub-region distribution and
shape resulting from the simulation agree
with real imaging data. It was shown that
the extent of vasculature is of greater
importance than the level of tissue
oxygen supply. The model allows for
quantitative analysis of tumour
parameters when physiological changes
occur in tumour microenvironment.

Voxel-based compartmental analysis is
feasible to quantify tumour hypoxia and
more reliable than static PET-SUV
measurements.

Simulation of homogenous and
heterogeneous oxygen and vascular
distribution. The model was tested on
mouse tumour: the simulated vasculature
and the Cu-ATSM PET hypoxia map
represent the image-based hypoxia
distribution. The model can be used for
anti-angiogenic treatment simulation.

Tumour growth and
response model with
hypoxia effects [15]

Evaluation of tumour
response to
anti-angiogenic therapy
(16]

BE_FLT (for
proliferation) &
Cu-ATSM PET

(for hypoxia) and CT

BE_FDG (for metabolic
activity)

BE_FLT (for
proliferation) &
Cu-ATSM PET

(for hypoxia) and CT

Models of treatment response

CT used for tumour anatomy. Behaviour
of tumour voxels modelled upon PET
data. FLT uptake was used as proliferation
index. A sigmoid relationship was
considered between Cu-ATSM SUV and
pO,. The Linear Quadratic model was
used for cell survival.

Model based on previous work [15] with
an added vascular component.
Microvessel density was used as model
parameter in direct relationship with the
vascular growth fraction. Probability
density functions were used to sample
capillary properties and geometry.

The model accurately reproduced tumour
behaviour for different oxygen
distribution patterns. Treatment
simulations resulted in poor control for
hypoxic tumours: heterogeneous oxygen
distribution resulted in heterogeneous
tumour response (i.e. higher survival
among hypoxic cells).y

The maximum vascular growth fraction
was found to be the most sensitive model
parameter. The dosage of the
anti-angiogenic agent bevacizumab can
be adjusted to improve oxygenation. The
model was validated on imaging data of a
phase I trial with bevacizumab on head
and neck cancer patients.
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employing tumour-specific radiotracers play an important
role in fulfilling this task. Therefore, information regarding
tumour kinetics and proliferation can be obtained from
proliferation-specific agents (such as FLT) while oxygen
distribution data is gained from hypoxia-specific radio-
tracers (such as FMISO or Cu-ATSM). Additionally, with
ongoing radiotracer development and evaluation, there
is scope for obtaining additional tumour characteristics,
such as acidosis using pHLIP and gene expression using
protein-specific agents such as Galacto-RGD, FDOPA, and
FES.

To further prove the usefulness of complex multiscale
models, the same group has simulated the effect of beva-
cizumab, an anti-VEGF agent, which is administered for
targeting endothelial cell population in tumours [16]. Tumour
hypoxia and proliferation data were gathered from PET
images taken before and after the antiangiogenic treatment.
Simulated hypoxia levels were compared with mean SUV
values and changes in mean SUV after the administration
of bevacizumab for various levels of hypoxia, proliferation,
and VEGF expression were analysed. The findings were
implemented on imaging data of a phase I clinical trial that
involved eight head and neck cancer patients, showing the
potential of such models to optimise treatment outcome.

6. Conclusion

The incorporation of patient-specific data into multiscale
models is necessary for individualized, predictive simula-
tion. This is an essential component of predictive oncology.
Image-based information can be transformed into input
parameters and incorporated into either probabilistic or
deterministic equations governing their relationships and
interdependences. Using these tools, countless hypotheses
can then be generated and scenarios of “what if” can be
simulated and solved. Models usually have the benefit of
independence from the manner in which input parameters
are obtained. This allows for the constant refinement of
parameters with future innovations in measurement tech-
niques, particularly in PET and PET/CT. Additionally, most
models can be readily adapted to include new parameters
in order to better resemble the real tumour environment.
The widespread, continuing research into in silico model
development and refinement permits the simulation of can-
cer with ever-increasing accuracy, with the goal of optimally
individualizing cancer management and improving overall
patient outcome.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

L. G. Marcu would like to acknowledge the support offered
by a Grant of the Ministry of National Education, CNCS-
UEFISCDIL, Project no. PN-II-ID-PCE-2012-4-0067.

References

[1] J. W. Fletcher, B. Djulbegovic, H. P. Soares et al., “Recommen-
dations on the use of 18F-FDG PET in oncology,” The Journal of
Nuclear Medicine, vol. 49, no. 3, pp. 480-508, 2008.

[2] O. Israel and A. Kuten, “Early detection of cancer recurrence:
"E-FDG PET/CT can make a difference in diagnosis and
patient care,” The Journal of Nuclear Medicine, vol. 48, no. 1, pp.
285-358, 2007.

[3] D. Papathanassiou, C. Bruna-Muraille, J.-C. Liehn, T. D.
Nguyen, and H. Curé, “Positron emission tomography in
oncology: present and future of PET and PET/CT, Critical
Reviews in Oncology/Hematology, vol. 72, no. 3, pp. 239-254,
2009.

[4] S.S. Gambhir, J. Czernin, J. Schwimmer, D. H. S. Silverman, R.
E. Coleman, and M. E. Phelps, “A tabulated summary of the
FDG PET literature,” The Journal of Nuclear Medicine, vol. 42,
no. 5, pp. 15-93S, 2001.

[5] T. M. Blodgett, C. C. Meltzer, and D. W. Townsend, “PET/CT:
form and function,” Radiology, vol. 242, no. 2, pp. 360-385, 2007.

[6] T.Beyer, D. W. Townsend, T. Brun et al., “A combined PET/CT

scanner for clinical oncology;,” The Journal of Nuclear Medicine,

vol. 41, no. 8, pp- 1369-1379, 2000.

T. Ishikita, N. Oriuchi, T. Higuchi et al., “Additional value of

integrated PET/CT over PET alone in the initial staging and

follow up of head and neck malignancy;” Annals of Nuclear

Medicine, vol. 24, no. 2, pp. 77-82, 2010.

[8] R.]J. Cerfolio, B. Ojha, A. S. Bryant, V. Raghuveer, ]. M. Mountz,
and A. A. Bartolucci, “The accuracy of integrated PET-CT
compared with dedicated PET alone for the staging of patients
with nonsmall cell lung cancer;” Annals of Thoracic Surgery, vol.
78, no. 3, pp. 1017-1023, 2004.

[9] G. Antoch, J. Stattaus, A. T. Nemat et al., “Non-small cell
lung cancer: dual-modality PET/CT in preoperative staging,”
Radiology, vol. 229, no. 2, pp. 526-533, 2003.

[10] W. D. Wever, S. Ceyssens, L. Mortelmans et al., “Additional
value of PET-CT in the staging of lung cancer: Comparison with
CT alone, PET alone and visual correlation of PET and CT,
European Radiology, vol. 17, no. 1, pp. 23-32, 2007.

[11] G. W. Goerres, G. K. von Schulthess, and H. C. Steinert, “Why
most PET of lung and head-and-neck cancer will be PET/CT;,
The Journal of Nuclear Medicine, vol. 45, no. 1, pp. 665-71S, 2004.

[12] A. Shammas, B. Degirmenci, J. M. Mountz et al., BEEDG
PET/CT in patients with suspected recurrent or metastatic well-
differentiated thyroid cancer;” The Journal of Nuclear Medicine,
vol. 48, no. 2, pp- 221-226, 2007.

[13] M. MacManus, U. Nestle, K. E. Rosenzweig et al., “Use of PET
and PET/CT for Radiation Therapy Planning: IAEA expert
report 2006-2007," Radiotherapy and Oncology, vol. 91, no. 1, pp.
85-94, 2009.

[14] P. Tracqui, “Biophysical models of tumour growth,” Reports on

Progress in Physics, vol. 72, no. 5, Article ID 056701, 2009.

B. Titz and R. Jeraj, “An imaging-based tumour growth and

treatment response model: investigating the effect of tumour

oxygenation on radiation therapy response,” Physics in Medicine

and Biology, vol. 53, no. 17, pp. 4471-4488, 2008.

[16] B. Titz, K. R. Kozak, and R. Jeraj, “Computational modelling of
anti-angiogenic therapies based on multiparametric molecular
imaging data,” Physics in Medicine and Biology, vol. 57, no. 19,
pp. 6079-6101, 2012.

[17] S. Sanga, H. B. Frieboes, X. Zheng, R. Gatenby, E. L. Bearer, and
V. Cristini, “Predictive oncology: a review of multidisciplinary,

=)

(15



10

(19]

(20]

(22]

(23]

[24]

[25]

(26]

(27]

(30]

(31]

(32

(34]

multiscale in silico modeling linking phenotype, morphology
and growth,” NeuroImage, vol. 37, pp. S120-S134, 2007.

T. S. Deisboeck, Z. Wang, P. MacKlin, and V. Cristini, “Multi-
scale cancer modeling,” Annual Review of Biomedical Engineer-
ing, vol. 13, pp. 127-155, 2011.

J. S. Lowengrub, H. B. Frieboes, E. Jin et al., “Nonlinear mod-
elling of cancer: bridging the gap between cells and tumours,”
Nonlinearity, vol. 23, no. 1, pp. RI-R9, 2010.

Y. Liu, S. M. Sadowski, A. B. Weisbrod, E. Kebebew, R. M.
Summers, and J. Yao, “Patient specific tumor growth prediction
using multimodal images,” Medical Image Analysis, vol. 18, no.
3, pp. 555-566, 2014.

D. M. Brizel, G. S. Sibley, L. R. Prosnitz, R. L. Scher, and M.
W. Dewhirst, “Tumor hypoxia adversely affects the prognosis
of carcinoma of the head and neck;” International Journal of
Radiation Oncology, Biology, Physics, vol. 38, no. 2, pp. 285-289,
1997.

A. L. Harris, “Hypoxia—a key regulatory factor in tumour
growth,” Nature Reviews Cancer, vol. 2, no. 1, pp. 38-47, 2002.
V. Adhikarla and R. Jeraj, “An imaging-based stochastic model
for simulation of tumour vasculature,” Physics in Medicine and
Biology, vol. 57, no. 19, pp. 6103-6124, 2012.

W. Tuckwell, E. Bezak, E. Yeoh, and L. Marcu, “Efficient Monte
Carlo modelling of individual tumour cell propagation for
hypoxic head and neck cancer,” Physics in Medicine and Biology,
vol. 53, no. 17, pp. 4489-4507, 2008.

D. Thorwarth, S. M. Eschmann, F. Paulsen, and M. Alber,
“A kinetic model for dynamic F_Fmiso PET data to analyse
tumour hypoxia,” Physics in Medicine and Biology, vol. 50, no.
10, pp. 2209-2224, 2005.

C. J. Kelly and M. Brady, “A model to simulate tumour
oxygenation and dynamic [18F]-Fmiso PET data,” Physics in
Medicine and Biology, vol. 51, pp. 5859-5873, 2006.

W. Wang, J.-C. Georgi, S. A. Nehmeh et al., “Evaluation of a
compartmental model for estimating tumor hypoxia via FMISO
dynamic PET imaging,” Physics in Medicine and Biology, vol. 54,
no. 10, pp. 3083-3099, 2009.

R. Haubner, H. J. Wester, W. A. Weber et al., “Noninvasive
imaging of «,f, integrin expression using '*F-labeled RGD-
containing glycopeptide and positron emission tomography;’
Cancer Research, vol. 61, no. 5, pp. 1781-1785, 2001.

A. J. Beer, R. Haubner, M. Sarbia et al., “Positron emission
tomography using ['*F]Galacto-RGD identifies the level of
integrin o, 8; expression in man,” Clinical Cancer Research, vol.
12, no. 13, pp. 3942-3949, 2006.

X. Zhang, Y. Lin, and R. J. Gillies, “Tumor pH and its measure-
ment,” Journal of Nuclear Medicine, vol. 51, no. 8, pp. 1167-1170,
2010.

R. A. Gatenby, E. T. Gawlinski, A. E Gmitro, B. Kaylor, and R.
J. Gillies, “Acid-mediated tumor invasion: a multidisciplinary
study;” Cancer Research, vol. 66, no. 10, pp. 52165223, 2006.

R. A. Gatenby and E. T. Gawlinski, “A reaction-diffusion model
of cancer invasion,” Cancer Research, vol. 56, no. 24, pp. 5745-
5753, 1996.

A. L. Vavere, G. B. Biddlecombe, W. M. Spees et al., ‘A
novel technology for the imaging of acidic prostate tumors by
positron emission tomography;” Cancer Research, vol. 69, no. 10,
pp. 45104516, 2009.

D. Grandér, “How do mutated oncogenes and tumor suppressor
genes cause cancer?” Medical Oncology, vol. 15, no. 1, pp. 20-26,
1998.

(35]

(36]

[37]

(41]

(42]

(43]

[44]

(49]

Computational and Mathematical Methods in Medicine

J. M. Chang, H. J. Lee, J. M. Goo et al., “False positive and false
negative FDG-PET scans in various thoracic diseases,” Korean
Journal of Radiology, vol. 7, no. 1, pp. 57-69, 2006.

A. D. Culverwell, A. E Scarsbrook, and E U. Chowdhury,
“False-positive uptake on 2—[18F]-ﬂuoro—2—deoxy—D—glucose
(FDG) positron-emission tomography/computed tomography
(PET/CT) in oncological imaging,” Clinical Radiology, vol. 66,
no. 4, pp. 366-382, 2011.

D. Delbeke, H. Schoder, W. H. Martin, and R. L. Wahl, “Hybrid
imaging (SPECT/CT and PET/CT): improving therapeutic
decisions,” Seminars in Nuclear Medicine, vol. 39, no. 5, pp. 308-
340, 20009.

A. K. Buck, G. Halter, H. Schirrmeister et al., “Imaging prolifer-
ation in lung tumors with PET: 18F-FLT versus 18F-FDG,” The
Journal of Nuclear Medicine, vol. 44, no. 9, pp. 14261431, 2003.

W. Chen, S. Delaloye, D. H. S. Silverman et al., “Predicting
treatment response of malignant gliomas to bevacizumab and
irinotecan by imaging proliferation with [18F] fluorothymidine
positron emission tomography: a pilot study,” Journal of Clinical
Oncology, vol. 25, no. 30, pp. 4714-4721, 2007.

B. S. Pio, C. K. Park, R. Pietras et al., “Usefulness of 3'-[F-
18]fluoro-3/-deoxythymidine with positron emission tomogra-
phy in predicting breast cancer response to therapy;,” Molecular
Imaging and Biology, vol. 8, no. 1, pp. 36-42, 2006.

H. Barthel, M. C. Cleij, D. R. Collingridge et al., “3'-Deoxy-3'-
['*F]fluorothymidine as a new marker for monitoring tumor
response to antiproliferative therapy in vivo with positron
emission tomography,” Cancer Research, vol. 63, no. 13, pp. 3791-
3798, 2003.

J. S. Rasey, J. R. Grierson, L. W. Wiens, P. D. Kolb, and J. L.
Schwartz, “Validation of FLT uptake as a measure of thymidine
kinase-1 activity in A549 carcinoma cells; The Journal of
Nuclear Medicine, vol. 43, no. 9, pp. 1210-1217, 2002.

W. Chen, T. Cloughesy, N. Kamdar et al., “Imaging proliferation
in brain tumors with 18F-FLT PET: comparison with 18F-FDG,
Journal of Nuclear Medicine, vol. 46, no. 6, pp. 945-952, 2005.

A. F Shields, “PET imaging with 18F-FLT and thymidine
analogs: promise and pitfalls,” The Journal of Nuclear Medicine,
vol. 44, no. 9, pp. 1432-1434, 2003.

G. Mees, R. Dierckx, C. Vangestel, and C. van de Wiele,
“Molecular imaging of hypoxia with radiolabelled agents,

European Journal of Nuclear Medicine and Molecular Imaging,
vol. 36, no. 10, pp. 1674-1686, 2009.

W. J. Koh, J. S. Rasey, M. L. Evans et al., “Imaging of hypoxia
in human tumors with [F-18]fluoromisonidazole,” International
Journal of Radiation Oncology, Biology, Physics, vol. 22, no. 1, pp.
199-212,1992.

S.T. Lee and A. M. Scott, “Hypoxia positron emission tomogra-
phy imaging with 18F-fluoromisonidazole,” Seminars in Nuclear
Medicine, vol. 37, no. 6, pp. 451-461, 2007.

Y. Fujibayashi, H. Taniuchi, Y. Yonekura, H. Ohtani, ]. Konishi,
and A. Yokoyama, “Copper-62-ATSM: a new hypoxia imaging
agent with high membrane permeability and low redox poten-
tial,” Journal of Nuclear Medicine, vol. 38, no. 7, pp. 1155-1160,
1997.

E Dehdashti, P. W. Grigsby, M. A. Mintun, J. S. Lewis, B. A.
Siegel, and M. J. Welch, “Assessing tumor hypoxia in cervical
cancer by positron emission tomography with 60Cu-ATSM:
relationship to therapeutic response—a preliminary report,’
International Journal of Radiation Oncology Biology Physics, vol.
55, no. 5, pp. 1233-1238, 2003.



Computational and Mathematical Methods in Medicine

[50] Y. Minagawa, K. Shizukuishi, I. Koike et al., “Assessment
of tumor hypoxia by ®*Cu-ATSM PET/CT as a predictor of
response in head and neck cancer: a pilot study,” Annals of
Nuclear Medicine, vol. 25, no. 5, pp. 339-345, 2011.

[51] J. P. Holland, J. S. Lewis, and E. Dehdashti, “Assessing tumor
hypoxia by positron emission tomography with Cu-ATSM,” The
Quarterly Journal of Nuclear Medicine and Molecular Imaging,
vol. 53, no. 2, pp. 193-200, 2009.

[52] J.S. Lewis, D. W. McCarthy, T. J. McCarthy, Y. Fujibayashi, and
M. J. Welch, “Evaluation of 64Cu-ATSM in vitro and in vivo in
a hypoxic tumor model,” Journal of Nuclear Medicine, vol. 40,
no. 1, pp. 177-183, 1999,

[53] K. Smallbone, D. J. Gavaghan, R. . Gatenby, and P. K. Maini,
“The role of acidity in solid tumour growth and invasion,”
Journal of Theoretical Biology, vol. 235, no. 4, pp. 476-484, 2005.

K. Smallbone, R. A. Gatenby, and P. K. Maini, “Mathematical
modelling of tumour acidity;” Journal of Theoretical Biology, vol.
255, no. 1, pp. 106-112, 2008.

N. Viola-Villegas, V. Divilov, O. Andreev, Y. Reshetnyak, and
J. Lewis, “Towards the improvement of an acidosis-targeting
peptide PET tracer,” The Journal of Nuclear Medicine, vol. 53,
supplement 1, abstract no. 1673, 2012.

[56] C. Nanni, S. Fanti, and D. Rubello, “18F-DOPA PET and
PET/CT;” Journal of Nuclear Medicine, vol. 48, no. 10, pp. 1577-
1579, 2007.

[57] A.Becherer, M. Szabd, G. Karanikas et al., “Imaging of advanced
neuroendocrine tumors with 18F-FDOPA PET,” The Journal of
Nuclear Medicine, vol. 45, no. 7, pp. 1161-1167, 2004.

[58] L. M. Peterson, D. A. Mankoff, T. Lawton et al., “Quantitative
imaging of estrogen receptor expression in breast cancer with
PET and "*F-fluoroestradiol,” The Journal of Nuclear Medicine,
vol. 49, no. 3, pp. 367-374, 2008.

[59] G. Tomasi, F. Turkheimer, and E. Aboagye, “Importance of
quantification for the analysis of PET data in oncology: review
of current methods and trends for the future,” Molecular
Imaging and Biology, vol. 14, no. 2, pp. 131-136, 2012.

[60] M. Vanderhoek, S. B. Perlman, and R. Jeraj, “Impact of different
standardized uptake value measures on PET-based quantifica-
tion of treatment response,” The Journal of Nuclear Medicine,
vol. 54, no. 8, pp. 1188-1194, 2013.

[61] H. Watabe, Y. Ikoma, Y. Kimura, M. Naganawa, and M. Shida-
hara, “PET kinetic analysis—compartmental model,” Annals of
Nuclear Medicine, vol. 20, no. 9, pp. 583-588, 2006.

[62] L. G. Strauss, A. Dimitrakopoulou-Strauss, and U. Haberkorn,
“Shortened PET data acquisition protocol for the quantification
of 18F-FDG kinetics,” The Journal of Nuclear Medicine, vol. 44,
no. 12, pp. 1933-1939, 2003.

[63] L. G. Strauss, L. Pan, C. Cheng, U. Haberkorn, and A.
Dimitrakopoulou-Strauss, “Shortened acquisition protocols for
the quantitative assessment of the 2-tissue-compartment model
using dynamic PET/CTI8F-FDG studies,” Journal of Nuclear
Medicine, vol. 52, no. 3, pp. 379-385, 2011.

[64] C. Burger, G. Goerres, S. Schoenes, A. Buck, A. Lonn, and G.
von Schulthess, “PET attenuation coefficients from CT images:
experimental evaluation of the transformation of CT into PET
511-keV attenuation coeflicients,” European Journal of Nuclear
Medicine and Molecular Imaging, vol. 29, no. 7, pp. 922-927,
2002.

Clinical PET-CT in Radiology. Integrated Imaging in Oncology,
Springer Science+Business Media, New York, NY, USA, 2011.

[54

[55

,—
o
=)

(6]

1

A. C. Pfannenberg, P. Aschoff, K. Brechtel et al., “Low dose non-
enhanced CT versus standard dose contrast-enhanced CT in
combined PET/CT protocols for staging and therapy planning
in non-small cell lung cancer;” European Journal of Nuclear
Medicine and Molecular Imaging, vol. 34, no. 1, pp. 36-44, 2007.
C. G. Cronin, P. Prakash, and M. A. Blake, “Oral and IV contrast
agents for the CT portion of PET/CT;” The American Journal of
Roentgenology, vol. 195, no. 1, pp. W5-W13, 2010.

S. K. Haerle, K. Strobel, N. Ahmad, A. Soltermann, D. T.
Schmid, and S. J. Stoeckli, “Contrast-enhanced *F-FDG-
PET/CT for the assessment of necrotic lymph node metastases,”
Head and Neck, vol. 33, no. 3, pp. 324-329, 2011.

E. Dizendorf, T. E Hany, A. Buck, G. K. Von Schulthess, and
C. Burger, “Cause and magnitude of the error induced by oral
CT contrast agent in CT-based attenuation correction of PET
emission studies,” The Journal of Nuclear Medicine, vol. 44, no.
5, pp. 732-738, 2003.

O. Mawlawi, J. J. Erasmus, R. E. Munden et al., “Quantifying
the effect of IV contrast media on integrated PET/CT: clinical
evaluation,” The American Journal of Roentgenology, vol. 186, no.
2, pp. 308-319, 2006.

Y. Liu, S. M. Sadowski, A. B. Weisbrod, E. Kebebew, R.
M. Summers, and J. Yao, “Multimodal image driven patient
specific tumor growth modeling,” Medical Image Computing
and Computer-Assisted Intervention, vol. 16, no. 3, pp. 283-290,
2013.



MEDIATORS

INFLAMMATION

The Scientific Gastroenterology Fou Journal of .
World Journal Research and Practice Diabetes Research Disease Markers

et
International Journal of

Endocrinology

Journal of
Immunology Research

Hindawi

Submit your manuscripts at
http://www.hindawi.com

BioMed
PPAR Research Research International

Journal u,f
Obesity

Evidence-Based p : _ {:

Journal of Stem Ce”S Complementary and 8 ' 1 3 Journal of
Ophthalmology International Alternative Medicine < ) Oncology

Parkinson’s
BINEENE

Computational and . z
Mathematical Methods Behavioural AI DS C dicine and

in Medicine Neurology Research and Treatment



