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Abstract 

Over the last decade, observational and modelling studies have both indicated that the intensity 

and frequency of rainfall extremes have increased. This increase has been linked to the human 

emissions of greenhouse gases that cause the climate to warm. There is increasing evidence that 

the largest changes in rainfall extremes are likely to occur for short duration events (less than a 

day), enhancing the potential for flash flooding over urban catchments and fast responding rural 

catchments. The economic, social and environmental effects of flash flooding are often 

catastrophic, resulting in substantial damage to properties and fatalities due to its sudden onset 

with little or no warning. 

The understanding of changes in sub-daily rainfall extremes is of paramount importance to help 

society in planning decisions about future flood risk resulting from climate change. Short 

duration rainfall is important for urban catchments where there is substantial investment in 

infrastructure. For instance, the design of urban water infrastructure for protection from 

stormwater requires information on rainfall extremes at short temporal (minutes to hours) and 

spatial (hundreds to thousands of meters) scales.  

Although observational studies are valuable for exploring historical changes to extreme rainfall 

patterns, future projections are usually obtained through the use of climate models to explore how 

rainfall patterns will respond to future greenhouse gases concentrations. General circulation 

models (GCMs) are sometimes used for estimating the effect of climate change on the intensity 

and frequency of rainfall extremes under different greenhouse gases emission scenarios. 

However, their coarse resolution fails to capture regional features of rainfall extremes such as the 

size of convective storms (1-10 km2) that are usually smaller than the spatial resolution of GCMs. 

By contrast, nested regional climate models (RCMs) are able to simulate the interactions between 

large-scale circulation systems and local scale weather patterns and topography. RCMs have 

proven to adequately simulate the statistical properties of rainfall extremes at daily and longer 

durations; while for sub-daily durations, model simulations are often improved by applying bias 

correction methods to match the observations. However, the evaluation of RCMs based on 

extreme rainfall statistics do not provide insight into whether the model gets the right answers 

(statistics of rainfall extremes) for the right reasons (correct representation of the underlying 

physical mechanism leading to rainfall extremes) and whether it is recommended to use the 

model simulations after applying any bias correction approach. 

The purpose of the research reported in this thesis was to explore the use of physically 

meaningful metrics to evaluate the capacity of regional climate models to simulate sub-daily 

rainfall extremes. The research metrics will complement the standard suite of statistical metrics 

that are commonly used for model evaluation studies. The physically meaningful metrics focus 

on the skill of RCMs in reproducing (i) the diurnal cycle of rainfall extremes, (ii) the seasonal 
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cycle of extreme rainfall events and (iii) the observed relationship between sub-daily rainfall 

extremes with respect to the atmospheric temperature. 

The research began with the evaluation of the capacity of three versions of the Weather Research 

and Forecasting (WRF) regional climate model to reproduce observed sub-daily rainfall 

extremes. First, the statistics of sub-daily rainfall extremes were estimated and compared with 

observations at 69 locations across the Greater Sydney region. The main results indicate 

underestimations in the intensity of rainfall extremes for 1-hour duration and overestimations in 

the intensity for longer durations (e.g. 3-hour, 6-hour and 12-hour), overestimations in the trend 

of the annual maxima of rainfall for sub-daily durations and overestimations in the annual 

maxima over high elevation areas and underestimations over coastal parts.  

Despite these apparent biases, the ability of the three RCMs to reproduce the underlying physical 

processes of sub-daily rainfall extremes was reasonable. The diurnal cycle of hourly rainfall 

extremes was realistically captured by the RCMs with a late evening peak in agreement with the 

observations. The seasonality was also captured and better simulated for short durations (1-hour 

and 3-hour) and during summer months. The intensification of sub-daily rainfall extremes with 

temperature was well captured by the RCMs, particularly at hourly durations when rainfall 

extremes approximately followed the Clausius-Clapeyron scaling rate. 

The overall capacity of the three RCMs provided the confidence to investigate likely changes in 

sub-daily rainfall extremes over Greater Sydney, considering two future periods in simulation 

(2020-2039 and 2060-2079) under the A2 emissions scenario of climate change. Future changes 

in sub-daily rainfall extremes were explored in (i) the intensity of sub-daily rainfall extremes, (ii) 

the diurnal cycle of rainfall extremes, (iii) the seasonality of sub-daily rainfall extremes, and (iv) 

the intensification of sub-daily rainfall extremes with temperature. The results from the two future 

periods were compared with the historical simulation period (1990-2009). The main findings 

indicated an overall increase in the intensity of rainfall extremes over inland areas for long 

durations (e.g. 6-hour and 12-hour), especially found in the long-term future period in the 

simulations.  

No significant changes were found for future projections of the diurnal cycle of rainfall extremes, 

which was fairly consistent with the historical period. Surprisingly, the greatest changes were 

found in the seasonality of sub-daily rainfall extremes with an increase in the occurrence of sub-

daily rainfall extremes during summer accompanied by a decrease during winter over the region. 

Future projections also indicated an intensification of rainfall extremes with temperature that 

followed a scaling rate close to the C-C rate for all sub-daily durations. In contrast, an analysis 

into the temperature scaling relationship revealed that the historical scaling relationship in 

simulations was not valid for future projections, with significant changes in the scaling rate. This 

has significant implications for the use of the Clausius-Clapeyron (C-C) scaling relationships for 

developing future climate projections, which are explored in the final part of this thesis. 

  



xiii 

Statement of Originality 

I, Virginia Edith Cortes Hernandez, hereby declare that this work contains no material which has 

been accepted for the award of any other degree or diploma in any university or other tertiary 

institution and, to the best of my knowledge and belief, contains no material previously published 

or written by another person, except where due reference has been made in the text. In addition, I 

certify that no part of this work will, in the future, be used in a submission for any other degree or 

diploma in any university or other tertiary institution without the prior approval of the University 

of Adelaide and where applicable, any partner institution responsible for the joint-award of this 

degree. 

I give consent to this copy of my thesis when deposited in the University Library, being made 

available for loan and photocopying, subject to the provisions of the Copyright Act 1968. 

I also give permission for the digital version of my thesis to be made available on the web, via the 

University’s digital research repository, the Library catalogue and also through web search 

engines, unless permission has been granted by the University to restrict access for a period of 

time. 

 

 

Signature        Date    

 

 



xiv 

Acknowledgements 

I take this opportunity to gratefully acknowledge my principal supervisor Dr Seth Westra and co-

supervisor Prof Martin Lambert for the opportunity to undertake my postgraduate study and for 

their effort in helping me to achieve my goal. 

I would like to acknowledge the research scholarship provided by my supervisor through the 

Australian government. 

I would like to also acknowledge to Feifei Zheng and Bree Bennett for their technical knowledge 

and constant help to improve my programming skills and statistical analysis during my studies. 

I would also like to acknowledge Barbara Brougham for helping me to improve the writing and 

editing of my thesis. 

I would like to thank to my husband Michael, his lovely family and my family and friends in 

Mexico for their unconditional love and support. I would also like to thank to my friends and 

colleagues in Adelaide for their support and motivation to complete my studies. 

Finally and most importantly, I would like to thank to God for the gift of faith and love that 

accompanied me through this journey. 

El Señor es mi pastor, nada me faltará. 

Él me hace descansar en verdes praderas, 

me conduce por aguas tranquilas y repara mis fuerzas; 

me guía por el recto sendero, por amor a su nombre. 

Aunque cruce por quebradas oscuras, no temeré ningún mal, 

porque Él está conmigo y su vara y bastón me protegen. 

Salmos 23 

 

 

 



 

1 

Chapter 1. Introduction 

The increase of sub-daily rainfall extremes is of paramount importance in the assessment and 

management of future flood risk resulting from climate change. Evidence from observations (Mishra 

and Lettenmaier, 2011; Mishra et al., 2012b; Mishra et al., 2014; Sun et al., 2006; Westra et al., 2013) 

and climate models projections (Kharin et al., 2013; Sillmann et al., 2013) suggest an increase in the 

intensity of rainfall extremes as a result of increasing greenhouse gases (GHGs) emissions and the 

atmosphere temperature rising. This is because sub-daily rainfall extremes are expected to increase 

following the Clausius Clapeyron relationship (O’Gorman and Schneider, 2009; Trenberth, 2011), 

which implies that a warmer atmosphere can hold more moisture (if moisture is available), resulting 

in more extreme rainfall events. 

An increased frequency and intensity of sub-daily rainfall extremes are the main cause of flash 

flooding (Alfieri and Thielen, 2015) over urban areas and rapid-responding rural catchments. The 

impact of flash floods is expected to increase with future rising sea levels and population growth and 

consequently increasing the future risk of failure of infrastructure. One example is in flood defence 

in urban areas. Moreover, the design of drainage systems in urban areas is controlled by the small 

response time of catchments to sub-daily rainfall extremes (Mishra et al., 2012a). 

The changing nature of rainfall extremes along with limitations in the availability and quality of 

observational data, mean that an increasing number of important decisions for planning and 

designing for flood risk need to rely on climate models (Westra et al., 2014b). General circulation 

models (GCMs) are considered to be the primary source of information for likely changes in future 

climate variables, such as temperature, pressure and rainfall. However, their coarse spatial resolution 

with grid cells of hundreds of kilometres has always meant that rainfall projections from these models 

have been seen as unreliable for reproducing rainfall extremes (Christensen and Christensen, 2003). 

Two approaches have therefore been developed to close the gap between the resolution of GCMs 

and the resolution needed for regional and local scale processes associated with rainfall extremes. 

Firstly, there is dynamical downscaling, which is able to simulate local conditions in greater detail 

by using output from the GCM to drive a nested regional numerical model to a higher spatial 

resolution. And, secondly, there is statistical downscaling, where a statistical relationship is 
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established between large scale variables, then subsequently used on the GCM data to obtain the 

relationship between local variables. For the purposes of the research described in this thesis, only 

dynamical downscaling was used. 

Regional climate models (RCMs) produce a better representation of finer scales and are able to 

simulate the interactions between large-scale weather patterns and the local topography that are 

required to improve the intensity of rainfall at short durations (Gutowski et al., 2003). 

Figure 1.1 illustrates the benefits of using a RCM to produce a higher spatial resolution of a localised 

area. The figure displays the result of using a 10-km horizontal resolution RCM to simulate the 

annual precipitation along southeast Australia during a defined period (Evans, 2012). Topographic 

and land-coast effects over the east coast are clearly seen in the RCM resolution (right panel) but not 

in the GCM (left panel). 

 

Figure 1.1 Illustration of the differences in resolution of simulations between a 

GCM (left panel) and a RCM (right panel) over southeast Australia 

modified from Evans et al. (2012). The improved resolution in the RCM is 

able to simulate costal and topographic effects near to Sydney (white 

box) which are not captured by the coarse resolution of the GCM. 

RCMs have proved capable of simulating the observational features of rainfall extremes at daily 

durations (Chan et al., 2014; Durman et al., 2001; Fowler and Ekström, 2009; Frei et al., 2003). 
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However, it is yet to be determined whether such models can simulate the physical mechanisms that 

lead to the occurrence of sub-daily rainfall extreme events. RCM must realistically resolve the 

underlying physical processes that cause sub-daily rainfall extremes, before the RCM data can be 

used, for instance, in the assessment of future flood risk, which is required for robust decision and 

policy making. 

The purpose of the research was, therefore, to evaluate the performance of RCMs by adding a set of 

metrics characterising the physical processes of rainfall extremes at short timescales to the standard 

statistical metrics and to investigate likely future changes in sub-daily rainfall using RCMs. 

1.1 Objectives of the research 

The main goal of the research reported in this dissertation was to evaluate the capacity of RCMs to 

simulate sub-daily rainfall extremes, and to capture the relevant physical mechanisms that lead to 

these extremes. To this end, the evaluation of climate models must include statistics and physical 

relationships relevant to temporal and spatial scales that influence sub-daily rainfall extreme 

mechanisms. 

RCMs have proven reasonable in reproducing rainfall extremes in daily and longer durations but less 

effort has been devoted to evaluating rainfall produced by RCMs at short time-scales. Statistics 

applied to rainfall extremes, such as rainfall intensity-frequency-durations, are commonly used for 

model evaluation. However, the simulation of relevant physical processes by RCMs is yet to be 

tested. 

The current research, therefore, sought to achieve three objectives: 

 to develop a strategy to evaluate regional climate models in reproducing sub-daily rainfall 

extremes by implementing a set of metrics that characterise the relevant physical processes; 

 to apply these metrics to three versions of the Weather Research and Forecasting (WRF) RCM 

over the Greater Sydney region to assess whether the models are able to simulate sub-daily 

rainfall extremes; and 

 to investigate the likely future response of sub-daily rainfall extreme events to climate change 

using each of the three WRF RCMs over the Greater Sydney region. 

The more detailed evaluation of the model results using the physically based metrics developed in 

the first objective will help determine the level of confidence that can be placed in projections of 
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future sub-daily extremes under a warmer climate. This can be used as valuable information in 

support of the assessment of future flood risk. 

1.2 Outline of the thesis 

Chapter 2 reviews the current understanding of sub-daily rainfall extremes intensification due to 

anthropogenic climate change. Sub-daily rainfall extreme events are of significant societal 

importance, as the main agent of flash-flood events in rapidly responding catchments. Extreme 

events in rainfall at fine spatial and temporal scales are an ongoing research interest, mainly for 

engineering design of flood protection infrastructure. A review of studies dealing with changes in 

rainfall extremes provides evidence that rainfall extremes are influenced by anthropogenic climate 

change, and the observed increase of rainfall intensities at short durations with surface atmospheric 

temperatures is conceptually governed by Clausius–Clapeyron equation at global scales, recognising 

that the intensity of rainfall is constrained by the atmospheric moisture availability over certain 

temperature ranges. 

Current tools used for investigating rainfall extremes are climate models, particularly RCMs which 

better simulate the temporal and spatial scales dominated by convective generation mechanisms 

associated with extreme rainfall events. Although RCM are suitable for studying rainfall extremes, 

less effort has been devoted to evaluate their ability to reproduce the physical processes that lead to 

sub-daily rainfall extremes in terms of the diurnal and seasonal characteristics of rainfall extremes 

and the hypothesis for the intensification of rainfall intensity with temperature. 

Chapter 3 introduces a strategy to evaluate the ability of RCMs to reproduce relevant physical 

aspects of sub-daily rainfall extremes. Observations from 69 weather stations across Greater Sydney 

and information from the CFSR reanalysis data are compared with three RCMs during 1990-2009. 

These RCMs were obtained from the NSW/ACT Regional Climate Modelling (NARCliM) project 

considering three different convective parameterisations in the Weather Research and Forecasting 

(WRF) model. 

This strategy of RCM evaluation was compared with the diurnal cycle and seasonality of sub-daily 

rainfall extremes, the relationship between sub-daily rainfall extremes and temperature and the 
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observed statistics of sub-daily rainfall extremes (e.g. the annual maxima and the 1 in 10-year rainfall 

event) at Greater Sydney. 

Chapter 4 explores projections of sub-daily rainfall extremes for near-term (2020-2039) and long-

term (2060-2079) future periods in the three RCMs at Greater Sydney. Future projections correspond 

to three different configurations in the WRF model (described in Chapter 3) using as boundary 

conditions the GCM-MIROC 3.2 medres forced by the A2 emission scenario from the 

Intergovernmental Panel on Climate Change (IPCC). 

Future changes associated to sub-daily rainfall extremes are investigated for:  

 the diurnal cycle of hourly rainfall extremes 

 the seasonality of sub-daily rainfall extremes at short-durations 

 the relationship between sub-daily rainfall intensity and temperature 

 the annual maxima of rainfall for sub-daily durations. 

Chapter 5 summarises the major conclusions of the research, the research contributions and 

limitations and the recommendations for future work. 
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Chapter 2. Literature review 

Changes in sub-daily rainfall extremes is an issue relevant to society, particularly in regions 

vulnerable to recurring flash flooding. The understanding and assessment of these changes are 

therefore integral to research in climate sciences and engineering hydrology, and in this context, a 

warming climate poses a challenge for prediction of rainfall extremes that involve complex 

interactions between large circulation and local weather systems. Future projections of sub-daily 

rainfall extremes require climate models that are able to reproduce the local scale and physical 

mechanisms that lead to the occurrence of rainfall extreme events at short time scales. These 

mechanisms include the diurnal and seasonal variability associated with convective rainfall, the 

spatial configuration of synoptic conditions associated with the most extreme rainfall events and the 

relationship between sub-daily rainfall extremes and temperature that have been poorly explored in 

RCMs. 

2.1  Definitions of rainfall extremes  

Extreme rainfall events are of interest to numerous disciplines and have different definitions that vary 

depending on the region, duration and type of analysis used (Jakob et al., 2011a, 2011b). These 

differences create difficulties in ensuring consistency when discussing extreme rainfall events. For 

instance, in climate science, rainfall extremes are defined by various extreme thresholds, such as the 

90th, 95th or 99th percentiles of a cumulative distribution function generally fitted to daily or longer 

rainfall durations. Alternatively, the annual maxima of rainfall are used for more extreme rainfall 

events (Groisman et al., 2001). 

Other ways of identifying extreme rainfall include the use of indices for climate variability and 

extremes which are above or below specific physically-based thresholds. For instance, the Expert 

Team on Climate Change Detection and Indices (ETCCDI) (Zhang et al., 2011) developed 27 indices 

to define daily or longer duration extremes for different atmospheric variables, such as temperature 

and rainfall. 

Table 2.1 outlines 10 of the ETCCDI indices that refer to rainfall extremes. These indices sample a 

wide variety of climates and include statistical definitions, such as the consecutive number of extreme 

events over the 95th and 99th percentile threshold ‒ exceedance that is more evenly distributed in 
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space and meaningful for each area. However, the use of threshold definitions is subject to specific 

values that will be exceeded at different rates and in different locations. 

Table 2.1 Definition of extremes in rainfall according to the ETCCDI indices (Zhang et al., 2011). 

ID Indicator Definitions Units 

RX1day Max 1-day 

precipitation amount 

Monthly maximum 1-day precipitation mm 

RX5day Max 5-day 

precipitation amount 

Monthly maximum consecutive 5-day precipitation mm 

SDII Simple daily intensity 

index 

The ratio of annual total precipitation to the number of wet  

days (≥ 1 mm) 

mm/day 

R10 Number of heavy 

precipitation days 

Annual count when precipitation ≥ 10 mm days 

R20 Number of very heavy 

precipitation days 

Annual count when precipitation ≥ 20 mm days days 

CDD Consecutive dry days Maximum number of consecutive days when precipitation < 1 mm days 

CWD Consecutive wet days Maximum number of consecutive days when precipitation ≥ 1 mm days 

R95p Very wet days Annual total precipitation from days > 95th percentile mm 

R99p Extremely wet days Annual total precipitation from days > 99th percentile mm 

PRCPTOT Annual total wet-day 

precipitation 

Annual total precipitation from days ≥ 1 mm mm 

In flood hydrology, rainfall extreme events define high intensity rainfall at different durations that 

have an important role in catchment-scale runoff generation, water storage, floods and soil erosion. 

For flood estimation purposes, rainfall extremes refer to events with small probabilities (much rarer 

that in climate science) such as the 1% annual exceedance probability (AEP) events which occurs 

on average once in 100 years (Westra et al., 2014b). Also, events less frequent than 1% AEP are of 

increasing interest for flood risk management (Horsham, 2003). 

Another definition is the probable maximum precipitation (PMP), which is the greatest accumulation 

of precipitation for a particular location, duration and time of year (WMO, 2009). PMP values have 

T-year return periods in the range 105 - 106 , in order to ensure the design of long lifetime dams that 

may experience future climate change impacts (Kunkel et al., 2013). PMP values depend on 

meteorological conditions such as atmospheric moisture, transport of moisture into storms, upward 

motions and strong winds (Trenberth et al., 2003). Moreover, PMP events can be transformed to 

probable maximum flood (PMF) values that are typically used in the design of large engineering 

infrastructure.   
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Typical extreme rainfall consequences at short-duration: Flash flooding. Sub-daily rainfall 

extremes are the main cause of flash flooding in rapidly responding catchments, such as in some 

rural catchments and urban drainage areas. Flash floods are short-term events, mostly occurring 

within a few hours of heavy rain causing a rapid rise in streamflow with depths of water over low-

lying areas (NOAA, 2014). Other causes include dam break, levee failure, snow melt and ice jams. 

The Toowoomba flash flood in Queensland, Australia, provides an example of such a flood. This 

event was the result of the interaction of a low-pressure system and an upper level trough (van den 

Honert and McAneney, 2011), which delivered approximately 152 mm of rain in only half an hour. 

The cost of this extreme event was approximately AU$174M in material damages, with seven 

fatalities (Leonard et al., 2014). The effects of this extreme rainfall event were potentially 

exacerbated by the wet antecedent conditions since Queensland was at the time in the midst of a La 

Niña event (Figure 2.1). 

 

Figure 2.1 Timeline of events related to the flood in Brisbane Australia during the 

wet season 2010-2011 (Leonard et al., 2014). 

Furthermore, during 2011, Typhoon Talas in Japan established a 72-hour rainfall record of 1625 mm 

and Korea experienced its wettest summer since 1908, and in 2012 flash floods generated by 

torrential rain swept the southern Russian Krasnodar Region causing 171 fatalities (Kotlyakov et al., 

2013).
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In the following year, 2013, seven hours of torrential rains flooded many regions of Buenos Aires, 

Argentina, with the hardest-hit area being the La Plata region, where 400 millimetres of rain fell in 

two hours, resulting in flash flooding and caused 86 fatalities (Aon, 2013). Finally, also during 2014, 

torrential rains caused flash flooding over several regions of Afghanistan and over the north of India 

and Pakistan, causing about 200 and 300 casualties, respectively (ADB, 2014). 

During the last decade, in fact, flash flooding has caused severe damage or loss of property, 

infrastructure and environmental resources, together with injuries and hundreds of fatalities 

worldwide. Flash floods can be more dangerous than slower-onset floods due to the fact that their 

sudden nature allows little or no time for mobilising an emergency response (Ahern et al., 2005). 

According to the National Weather Service, flash floods are the number one weather-related killer 

in the US each year, and most fatalities happen in vehicles when people are swept away trying to 

cross flooded intersections (National Weather Service, 2010). 

Urban areas are more susceptible to flash flooding due to impermeable surfaces which increase water 

runoff. The risk of such floods over urban and coastal areas is expected to increase in the future due 

to rising sea levels and increasing urbanisation. Moreover, climate change will lead to an increase in 

rainfall intensity at short durations with warmer atmospheric temperature and available moisture 

content (Willems et al., 2012). For this reason, investigation of changes in sub-daily rainfall extremes 

influenced by climate change is essential in order to support urban planning policies and to design 

engineering infrastructure for flood protection (Westra et al., 2014). 

2.2 The response of rainfall extremes to a warming planet 

The main changes in rainfall are observed in the intensity, frequency, duration and types of events 

(Trenberth, 2011; Trenberth et al., 2003). For instance, changes in annual average rainfall suggest a 

spatial variability tendency of wet regions to get wetter and dry regions to get drier (Allan and Soden, 

2008; Allen and Ingram, 2002; Chou et al., 2013). However, changes in extremes might also increase 

in regions where annual averages decrease. This has already been observed in several regions 

worldwide (Dai, 2011), where a warmer climate is accelerating the evaporation of moisture over the 

land-surface. This increases atmospheric water vapour, which is concentrated in the lower 

troposphere and then transported by atmospheric winds to regions where storms are formed. 
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Increasingly moist weather systems favour more intense rainfall events, but may also reduce their 

duration and/or frequency (Trenberth, 2012). 

Climate model projections also suggest that greenhouse gases may strongly influence rainfall 

extreme events, which are expected to become more intense and frequent in the future (Kao and 

Ganguly, 2011). 

2.2.1  The influence of anthropogenic climate change on rainfall  extremes  

‘Human influence on the Earth’s climate is clear’. This affirmation is based on observational and 

climate model evidence that reflects increasing GHGs in the atmosphere, positive radiative forcing 

and observed climate warming (IPCC, 2013). Although natural variability is the main driver of the 

climate system, anthropogenic forcing has modified the natural bounds where the weather develops 

(Trenberth, 2012). 

Most climate change impacts are perceived through changes in weather extremes, such as the heavy 

downpours mentioned in Section 2.1 that have caused major human fatalities and economic damage 

around the world during the past decade (Coumou and Rahmstorf, 2012). The IPCC in its Fourth 

Assessment Report (4AR) indicates that:  

Generally, numbers of heavy daily precipitation events that lead to flooding have 

increased due to global warming (Solomon et al., 2007). 

Evidence of anthropogenic climate change. Evidence of anthropogenic climate change includes 

changes to the planetary and large scale circulation systems with increased surface temperature, 

atmospheric water vapour, evaporation and intensity of storms. 

Temperature. The global land-ocean surface temperature is on average 0.85 °C (0.6 to 

1.6°C) warmer since 1880 (IPCC, 2013). This rise in surface temperature has led to higher 

evaporation (mainly over oceans) which also has increased since late 1980’s (Schlosser and Houser, 

2007). 

Atmospheric water vapour. The amount of water vapour in the atmosphere has increased 

since 1973 (Ross and Elliott, 2001), especially over regions where moisture is available. The specific 

humidity and total column water vapour content have increased globally at a rate of approximately 

7%/°C (in agreement with the Clausius–Clapeyron rate) in response to changes in surface 

temperature (Allan et al., 2014). However, the relative humidity has declined over low latitude and 

mid-latitude land areas during the last decade, suggesting that this decrease may be due to limited 
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supply of water from the ocean. Possible implication of this decrease can mean less chance of 

precipitation because the threshold for condensation is reached less often (Simmons et al., 2010). 

Changes in circulation patterns. The width of the tropical belt and associated changes in 

Hadley circulation patterns have caused the poleward migration of large-scale atmospheric 

circulation, such as jet streams and mid-latitude storm systems (Seidel et al., 2008). The intensity of 

tropical cyclones has also increased, with high wind speeds and heavy rainfall as a result of warmer 

tropical sea surface temperatures, while the occurrence, has decreased (IPCC, 2013; Solomon et al., 

2007). 

Changes in rainfall extremes. Empirical and modelling studies into extreme rainfall 

support the evidence of increasing intensity and frequency of rainfall extremes as global warming 

intensifies (Alexander et al., 2006; Coumou and Rahmstorf, 2012; Trenberth, 2012; Westra et al., 

2013). The trend is global, with annual maximum daily rainfall intensity changing at a rate of 5.9-

7.7%/°C with respect to averaged surface temperature (Westra et al., 2013). 

These observations suggest a complex pattern of change, with regionally-specific changes in both 

atmospheric moisture availability and the atmospheric circulation patterns that draw moisture into a 

region. The changes also modify the atmospheric moisture recycling of local rainfall that results from 

moisture already in the atmosphere, convergence of the moisture brought in by the winds or 

evaporation of surface moisture into the atmosphere (Trenberth, 1999).  

Similarly, GCMs adopted from the Coupled Model Intercomparison Project Phase 5 (CMIP5)  

(Taylor et al., 2011) indicate a global increase in daily rainfall extremes of about 6 % per °C and 

lower rates over extratropical land regions (Kharin et al., 2013). Most of these studies have focused 

on the daily timescale due to the availability of data and modelling outputs. However, the analysis of 

trends in sub-daily rainfall extremes remain limited due to the lack of sampling and poor quality in 

existing observations, as well as the lack of ability of coarse-resolution dynamical models to 

realistically simulate sub-daily rainfall (Chan et al., 2014). This has led to a recent focus on the 

observed relationship between sub-daily extreme rainfall and atmospheric temperature. 

2.2.2  The relationship between rainfall  intensity and temperature  

Assuming a constant relative humidity, the actual atmospheric moisture content should increase at a 

rate referred to as the Clausius-Clapeyron rate of 7% per 1°C, which describes how a warmer 

atmosphere can hold more water (Trenberth et al., 2003). It has been suggested that the intensity of 
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extreme precipitation events will scale with the moisture available in the atmosphere; so that as a 

first approximation, it might be assumed that extreme precipitation will also scale at 7% per 1°C.  

Considering typical atmospheric conditions, the saturation-specific humidity approximately 

increases by ~7% per degree at 0°C and ~6% per degree at 24°C for atmospheric pressure in the 

range of 850 mb and 700 mb (Trenberth et al., 2003). 

The Clausius-Clapeyron relation is expressed as: 

2RT

Le

dT

de ss 
 (Eq. 2.1) 

where es is the vapour pressure (also called water holding capacity), T is the temperature, 

L is the latent heat (heat of transformation) of vaporization or condensation and R is the 

ideal gas constant (8.3144 J-1 mol K-1).  

The August-Roche-Magnus equation provides a good approximation of the water-holding capacity 

of the atmosphere under typical atmospheric conditions: 
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 (Eq. 2.2) 

where es is the saturated vapour pressure which changes with T in °C. 

The rate of change of es with temperature is the Clausius-Clapeyron (C-C) temperature scaling. This 

scaling gives the fractional rates of changes of the column water vapour measured by satellite 

observations, which is the baseline for quantifying changes in the amount of water in the atmosphere 

(O’Gorman and Muller, 2010). 

Although the Clausius-Clapeyron rate may be a convenient approximation for estimating how 

extreme rainfall will scale with temperature, changes in atmospheric large scale circulation patterns, 

thermodynamics of the atmosphere and clouds and limitations in moisture increase can induce 

deviations in the C-C scaling. Furthermore, changes in moisture content can be modified by 

additional latent heat release which enhances the low-level moisture convergence, leading to an 

increase in rainfall (O'Gorman and Schneider, 2009; Trenberth, 2005). 

Extremes scaling with atmospheric temperature. A number of empirical studies have been 

conducted to determine how rainfall extremes scale with atmospheric temperature. Observational 

studies in Europe and Australia have found that approximately the 99th percentile of sub-daily rainfall 

follows the C-C rate (Hardwick Jones et al., 2010; Lenderink and van Meijgaard, 2008). In addition, 
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studies of hourly rainfall extremes have also reported increases in extremes at about twice (~14%/°C) 

the C-C scaling rate (also termed 2-CC or super-CC) for high temperatures up to 22°C (Berg et al., 

2013; Lenderink and van Meijgaard, 2008; Lenderink and Van Meijgaard, 2010; Mishra et al., 

2012b; Utsumi et al., 2011). Moreover, convective rainfall is considered to be the dominant rainfall 

type associated to super-CC scaling rates found at 10-minute and hourly rainfall intervals (Berg et 

al., 2013; Loriaux et al., 2013). 

Climate modelling studies have also reported on the ways in which extreme rainfall might scale with 

temperature. Two studies using a cloud-resolving model in the tropics indicated that rainfall extremes 

increase approximately in line with the C-C scaling (Muller et al., 2011; Romps, 2010). In another 

study using an idealised squall line for mid-latitudes, a super-CC scaling at sub-hourly time scales 

was found (Singleton and Toumi, 2013). A recent study using the convective-permitting mesoscale 

model with 2.5 km horizontal resolution, Harmonie, found for 11 intense (convective) rainfall cases 

a scaling rate of 11%-14% per degree (Attema et al., 2014). 

Results from the aforementioned studies have contribute to the understanding of potential changes 

to sub-daily rainfall extremes following either the C-C and super-CC. However, the interpretation of 

the observed scaling rates is complex and requires a better understanding of the interaction between 

atmospheric variables and physical processes that influenced on the scaling (Westra et al., 2014b). 

Temperature, atmospheric moisture and rainfall extremes. Increasing observational and climate 

modelling studies have investigated the relationship between atmospheric temperature and rainfall 

intensity as a basis for projecting changes in sub-daily rainfall extremes, arguing that the intensity 

should increase following either the CC rate or 2 C-C over certain ranges of temperature and 

availability in moisture. For example, a study by Hardwick Jones et al. (2010) showed that hourly 

rainfall extremes increase with temperature up to 24°C (Figure 2.2a), approximating the C-C rate for 

several regions across Australia. However, the scaling decreases at higher temperatures and becomes 

negative (also known as the inflection point of the temperature scaling). 

The decrease in rainfall intensity at higher temperatures has been associated with a deficit in 

atmospheric moisture content, but this relationship is yet to be understood. Some studies have plotted 

the relative humidity and associated temperature (Figure 2.2b), finding a clear agreement between 

the temperature when the scaling occurs and when the relative humidity begins to decline (Hardwick 
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Jones et al., 2010; Lenderink et al., 2011; Shaw et al., 2011; Utsumi et al., 2011). In addition, results 

by Hardwick Jones et al. (2010) suggest a need to investigate not only the moisture holding capacity 

of the atmosphere, but also the moisture content available at the time of observation. 

 

Figure 2.2  Relationship between surface temperature and rainfall extremes based 

on empirical studies by Westra et al. (2014b). (a) Black line represents 

the observed increase in rainfall intensity with temperature following 

approximately the C-C scaling (long-dashed black lines) below 12°C. For 

temperatures from 12°C to 24°C, the increase of rainfall intensity follows 

the super-CC scaling (dot-dashed black lines); whereas for temperatures 

higher than 24°C, the scaling becomes negative. (b) Observed behaviour 

of relative humidity decreasing at higher temperatures. 

Berg et al., (2009) suggest that results obtained from the relative humidity do not necessarly imply 

the same decrease for the total moisture content. Thus, dew point temperature Td is the temperature 

at which the air is fully saturated and is considered as a direct measure of atmospheric absolute 

humidity (Lenderink and Van Meijgaard, 2010). Dew point temperature represents the actual 

absolute specific humidity qv of the atmosphere, expressed by: 

)()( TqTq vdsat 
 (Eq. 2.3) 

where qsat is the saturation specific humidity as function of drew point temperature (Td) 

(omitting the dependency of qsat on pressure) and qv is the actual specific humidity (or 

moisture content) of the air.  

The difference between temperature and the dew point temperature (T –Td) is commonly referred to 

as the dew point depression, which is a direct measure of relative humidity (Lenderink and Van 

Meijgaard, 2010). As a first approximation, constant dew point depression implies no changes in 

relative humidity for most temperature ranges (since qsat is approximately an exponential function of 

T). Despite the fact that dew point temperature is a better indicator of humidity, the use of surface air 
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temperature gives a better representation of the peak in rainfall intensity over a certain temperature, 

because a decline from 24°C cannot be observed using dew point temperatures. 

2.2.3  Evidence of increase in sub-daily rainfall extremes  

Most studies have identified an increase in rainfall extremes over land since 1950 based on daily 

observational data at large regional (Groisman et al., 2012; Hartmann et al., 2013; Skansi et al., 2013; 

van den Besselaar et al., 2013) and global scales (Alexander et al., 2006; Donat et al., 2013; Groisman 

et al., 2005; Westra et al., 2013). For example, Groisman et al. (2005) identified a widespread 

increase in daily rainfall extremes (defined by the upper 0.3%) over mid-latitudes while Alexander 

et al. (2006) reported a significant increase in the intensity and frequency of global observed daily 

rainfall extremes (rainfall above the 95th and 99th percentiles) between 1951 and 2003. In fact, rainfall 

extremes observed in the northern hemisphere have become more intense (Min et al., 2011), 

particularly in 30% of the main urban areas across the USA, which recorded a statistically significant 

increase for the period 1950-2009 (Mishra and Lettenmaier, 2011). Westra et al. (2013) also found 

a global increasing trend in annual maximum daily rainfall intensity at a rate of 5.9-7.7%/°C with 

averaged surface temperature.  

Furthermore, climate model projections applied during the CMIP5 suggest a global increase in daily 

rainfall extremes as the climate warms by about 6% per 1°C, with lower rates over extratropical land 

regions (Kharin et al., 2013; Sillmann et al., 2013). However, findings from Westra et al. (2014b) 

suggest that trends in rainfall extremes from daily scales might not be reflected in sub-daily time 

scales. 

The few existing trend studies of sub-daily rainfall extremes mainly focus on single sites (i.e. urban 

catchments) or small regions (Beuchat et al., 2011; Fujibe, 2013; Jakob et al., 2011b) with some 

considering large scale regions and long term trends (Hartmann et al., 2013). However, the main 

findings agree that rainfall intensity increases even at sub-hourly durations (Chan et al., 2013; Westra 

and Sisson, 2011). 

According to a recent regional assessment by Westra et al. (2014b), there is a scarcity of literature 

related to sub-daily rainfall extremes in many parts of the world. This is mainly attributed to 

incomplete sampling in rain gauge stations, poor-quality data at sub-daily intervals (Nicholls and 

Alexander, 2007) and non-homogeneous spatial distribution in the observations.  

The lack of high quality and long sub-daily rainfall records is a major limitation to project changes 

in sub-daily rainfall extremes under a future climate. Therefore, climate models with fine temporal 
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and spatial scales are used to complement the existing gaps in the observations and to generate 

projections of sub-daily rainfall extremes under future climate change. 

2.3  Climate models 

2.3.1 General circulation vs regional models  

General circulation models. GCMs are global in their focus and have coarse resolutions of 

hundreds of kilometres (with ~100-km grid spacing) that simulate reasonably well the large-scale 

time-averaged rainfall patterns, but fail to reproduce the spatio-temporal distribution of rainfall or 

small-scale regional features (Tripathi and Dominguez, 2013), such as persistence (Johnson and 

Sharma, 2011). These models have also proved limited in terms of reproducing rainfall extremes. 

Although the frequency is relatively well simulated, the intensity of rainfall is underestimated (Dai, 

2006; Sun et al., 2006). Moreover, the coarse horizontal resolution of GCMs cannot accurately 

represent the distribution of extreme events at short scales (Chen and Knutson, 2008). 

The underestimation of the occurrence of heavy rainfall with a poor representation of moist physical 

processes is another disadvantage of GCMs (Kang et al., 2014). Sub-daily rainfall extreme events 

are mainly related to convective processes (Haerter and Berg, 2009; Hand et al., 2004; Mishra et al., 

2012a) which occur on fine temporal and spatial scales that GCMs cannot resolve. Indeed, most 

urban hydrology studies require rainfall intensities at short durations because of the focus on the 

behaviour of urban drainage systems. 

Figure 2.3 illustrates the temporal and spatial scales of atmospheric processes, the range of scales 

covered by the GCMs and the fine-scale resolution required in climate models to simulate sub-daily 

rainfall extreme for urban hydrology studies. 

Regional climate models. RCMs are often used to resolve this mismatch. They can be nested into a 

GCM to represent the atmospheric physics at a fine horizontal grid resolution (spacing from 2km to 

50 km). RCM can help address important research questions in urban hydrology by downscaling 

global climate models into regional scales of high temporal (10 min to few hours) and spatial 

resolutions (~10 km or less) at which decision makers and stakeholders operate (Berne et al., 2004; 

Fowler et al., 2007). 
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Indeed, RCMs offer a better representation of the local scale features, such as topography, coastline 

and land cover, required to investigate rainfall patterns (Chan et al., 2013; Evans and McCabe, 2013). 

 

 

Figure 2.3 Temporal and horizontal spatial scales of atmospheric processes (in 

grey circles), the range of scales represented in GCMs (blue square) and 

the resolution needed for urban hydrology (red line) adapted from Di 

Luca et al. (2012) and Leonard et al. (2014). 

Some differences between the main GCMs and RCMs are listed in Table 2.2. These differences are 

found in the temporal and spatial resolutions and in the parameterisation schemes and the lateral 

boundary conditions selected. For instance, GCMs are coupled atmosphere-ocean models covering 

horizontal resolutions that are typically greater than 100 km, while RCMs are pure atmospheric 

models without a couple ocean component and run at higher resolutions (≤ 50 km). 
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Another major difference between GCMs and RCMs is the lateral boundary condition in RCMs, 

which can be provided by a GCM, a global (re-)analysis or from another RCMs when using a double 

nesting technique (Wibig et al., 2015). 

Table 2.2 Comparison of the spatial and temporal resolutions of two typical GCMs and two typical RCMs. 

Model Name 
Spatial 

resolution 

Temporal 

resolution 
Description 

GCM 

CSIRO-Mk3.0 
1.875°× 
1.875° 

(~200 km) 

Monthly, 
daily and 
six-hourly 

CSIRO-Mk3.0 is a coupled atmosphere–ocean model 
with dynamic sea-ice and also has a soil–canopy 
scheme with prescribed vegetation properties 

HadCM3 
2.5° × 3.75° 
(~300 km) 

Daily and 
six-hourly 

HAdCM3 is a coupled atmosphere-ocean (sea ice 
model) general circulation model without the need for 
the flux adjustments (flux quantities connecting the 
atmospheric and oceanic systems) 

RCM 

PRECIS 
(HadRM3P) 

0.44°× 0.44° 
(~50 km) or 
0.22°× 0.22° 

(~25 km) 

hourly 

PRECIS is a hydrostatic atmospheric and land 
surface model of limited area using physical 
parameterisations, boundary conditions, initial 
conditions and spin-up. It also contains an 
atmospheric sulphur cycle 

WRF 
0.1°× 0.1° 
(~10 km) 

hourly 
WRF is a non-hydrostatic mesoscale, primitive-
equation model with different physical schemes and 
boundary conditions 

Advantages and disadvantages. The advantages and disadvantages of GCMs and RCMs are 

outlined in Table 2.3. It can be seen that RCMs are highly dependent on GCM boundary conditions 

and are highly sensitive to the physical parameterisation (e.g. convection scheme, cloud 

microphysics scheme, planetary boundary layer scheme and longwave and shortwave radiation 

schemes) used. 

The added value provided by the regionalisation of spatial and temporal resolutions in these models 

has encouraged the use of RCMs for understanding changes in rainfall extremes. However, most 

studies have investigated rainfall extremes for seasonal or daily simulations, and for regional or larger 

scales (Fowler et al., 2005; Gutowski et al., 2010; Salathé et al., 2010; Wehner et al., 2010). For 

instance, the magnitude of extreme regional rainfall for daily and multi-daily durations during winter 

has been skilfully simulated by 13 RCMs across the UK (Fowler and Ekström, 2009). 
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Table 2.3 Summary of main advantages and disadvantages of climate models for rainfall extremes. 

Climate 

mode 

Advantages Disadvantages 

 

 

GCMs 

 Consistent representation of the 
physical processes that interact at 
global and regional scales 

 Able to reproduce rainfall extremes at 
daily and longer time scales 

 Expensive and intensive computation cost 

 Operate at spatial scales too coarse and for 
long time periods 

 Poor performance of rainfall extremes at 
short-durations 

 

 

 

RCMs 

 Higher temporal and spatial resolution 
than GCMs 

 Better representation of local scale 
features such as topography, land-sea 
contrasts and changed surface cover 

 Better representation of atmospheric 
physics that lead to sub-daily rainfall 
extreme events 

 Good performance of daily rainfall 
extremes  

 Expensive and intensive computation cost 

 Nested within a global climate model that 
provide boundary layer conditions 

 Highly dependent to convective 
parameterizations 

 Simulate individual extreme events over 
limited areas 

 Prone to bias 

In other studies, five RCMs simulated quite well the 1-day rainfall extreme events when compared 

to radar data across the Netherlands (Hanel and Buishand, 2010); and RCMs used in the North 

American Regional Climate Change Assessment Program (NARCCAP) demonstrated a satisfactory 

performance in reproducing the historical season of occurrence, mean, and variability of 24-hour 

precipitation extremes for 100 urban areas across the United States (Mishra et al., 2012a). However, 

a general conclusion suggests that RCM simulations depend greatly on the region, season, intensity 

and duration of the rainfall event considered (Maraun et al., 2010). 

2.3.2 The use and assessment of regional climate models  

Simulating sub-daily rainfall extremes. A few recent studies have looked at sub-daily rainfall 

extremes using RCMs. For instance, Lenderink and van Meijgaard (2008) investigated changes in 

hourly rainfall maxima over Europe using the 25 km resolution RCM, and found a good agreement 

in the increase of hourly rainfall extremes with temperature between the observed climate and the 

modelled climate change signal.  

Other studies include RCMs with a 10 km horizontal resolution which are able to capture reasonably 

well the spatial scale of 3-hour rainfall extremes (Tripathi and Dominguez, 2013) and the diurnal 

cycle of sub-daily rainfall (Evans and Westra, 2012). However, Hanel and Buishand (2010) found 

that the intensity of 1-hour rainfall maxima in eight 25-km RCM simulations was too low compared 
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with radar observations. The finding is consistent with Mishra et al. (2012a) who found that the 

intensity of 3-hour rainfall extremes is underestimated. It was also found that with high spatial 

resolution, the capacity of RCMs in rainfall extreme simulations decreases.  

RCMs usually perform poorly when dealing with convection with high time and space variability, 

generating a bias in terms of rainfall extremes (Argueso et al., 2013). This is due to the scale-

separation approximation that is introduced by the convective parameterisations (Li et al., 2012), 

where moist physical processes (e.g., convective, cloud, and rain processes) that trigger rainfall 

extremes are poorly simulated (Evans and Westra, 2012). Parameterisation schemes used in RCMs 

are a known source of uncertainties and errors in simulation of Australian regional conditions 

because most RCMs are primarily developed for the tropics and for coarser resolution (50–100-km) 

GCMs (Hohenegger et al., 2008). 

Convective-permitting models 

Alternatives for investigating sub-daily rainfall events are convective-permitting models. 

Convective-permitting models are very high-resolution models (~1-km grid resolution) that display 

realistic model dynamics and a better representation of convection without the need for 

parameterisation schemes (Kendon et al., 2012). Some advantages of using convective-permitting 

models can be observed in the intensity of the most extreme rainfall (Prein et al., 2013) and the 

realism (spatial and temporal structure) of hourly rainfall extremes (Chan et al., 2014; Kendon et al., 

2012). However convective-permitting models are computationally very expensive which limits 

their implementation. 

The need for a physical basis in the evaluation of RCMs. There is considerable confidence in the 

ability of climate models to project future climate change, especially at global scales and for 

projections of some climate variables (e.g. temperature) than for others (e.g. precipitation) (Randall 

et al., 2007). This confidence is based on the fact that the models can reproduce observed features of 

past and current climate based on physical principles (Solomon et al., 2007). 

The capacity of RCMs to predict climate change at the local level has been investigated by comparing 

simulations with observations. Typically, the model evaluation approaches consist of indices and 

metrics that evaluate statistics of rainfall extremes for daily and longer durations. 
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Indices are used to characterise the properties of the data, for example the number of days exceeding 

the 99th percentile threshold. Indices such as this therefore allow the spatial comparison of the 

probability distribution of rainfall across different regions (Alexander et al., 2006; Moberg et al., 

2006; Zhang et al., 2011). 

Metrics, on the other hand, characterise model performance and its sensibility to observational 

uncertainties, spatial scales, domain and the period of the simulation. Usually, metrics are scalar 

measurements used to directly compare model outputs with observations, for example, in the 

estimation of statistical measures, such as the mean error, root-mean square error, correlation and 

variance (Gleckler et al., 2008; Holtanová et al., 2012). 

Direct measures of extreme rainfall in RCMs. Several studies have examined rainfall extremes in 

climate models (Benestad, 2010; Gregersen et al., 2013; Nguyen et al., 2010). Rainfall extremes have 

been evaluated by different indices that characterise the tail of the distribution of rainfall. Examples 

of indices commonly used are: 

 The STARDEX (Haylock et al., 2006) and ETCCDI (Zhang et al., 2011) rainfall indices 

 the threshold exceedance indices, such as the 95th or 99th percentiles of a probability 

distribution function (Benestad, 2010) 

 the maximum rainfall in a day or in a specific number of consecutive days (Beniston et al., 

2007; Groisman et al., 2001) 

 T-year return periods of rainfall at different durations (Fowler and Ekström, 2009; Frei et al., 

2006) 

 the intensity-duration(-area)-frequency (ID(A)F) relationship (Nguyen et al., 2010; Olsson et 

al., 2012). 

The performance of extreme rainfall indices in climate models is also quantified by metrics. 

According to Sunyer et al. (2013), these metrics can be separated into two main categories:  

 metrics that evaluate the performance of climate models at model grid level or regional 

average (Hanel and Buishand, 2010; Lenderink et al., 2011). These metrics analyse the bias for 

one or more indices, the properties of empirical distributions, and the confidence intervals of 

return levels (Frei et al., 2006) 

 metrics that examine the ability of models to represent the spatial distribution of rainfall 

(Fowler and Ekström, 2009; Lenderink and Van Meijgaard, 2010). These metrics focus on 
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semi-variograms (Zolina et al., 2013) and principal components analysis (Ngongondo et al., 

2011). 

Typical metrics applied in the climate sciences are the Taylor diagram, which illustrates the model 

bias and the spatial pattern and variability of the root mean square error (RMSE).  

Other studies have used a combination of different metrics. For example, Lenderink et al. (2011) 

applied the bias and the spatial variance using the 99.9th percentile of rainfall intensity between the 

RCM output and the observations. In addition, Sunyer et al. (2013) considered a set of indices for 

extreme rainfall (i.e. 90th, 95th, 97.5th and 99th percentiles of the wet days precipitation amount) and 

two metrics (bias and RMSE). 

In addition to the direct metrics of evaluation based on statistics, there is another set of metrics applied 

in meteorological and climate research that accounts for inconsistencies and systematic errors in 

climate models (Trenberth et al., 2003). These types of metrics evaluate the representation of the 

physical processes that regulate moist convection and the influence of large-scale circulation systems 

that favour the onset of rainfall extremes events. 

The diurnal cycle of sub-daily rainfall extremes. The diurnal cycle has also been used to 

investigate the amplitude, timing of the maximum rainfall intensity and the frequency of rainfall 

occurrence in RCMs (Evans and Westra, 2012). The cycle is caused by diurnal variations of solar 

radiation and associated atmospheric variables, such as pressure, wind, temperature and humidity 

(Dai and Trenberth, 2004); and is an important characteristic of rainfall over regions dominated by 

topographical features and synoptic systems. The cycle can be expressed in terms of frequency and 

intensity of rainfall as a function of the time of day (Trenberth et al., 2003) or can be characterised 

by the diurnal composites and harmonic analysis. For example, the harmonic phase displays the 

timing of the maximum rainfall amount and frequency, which greatly depend on the region (Ai-Juan 

et al., 2008). 

Several studies have been conducted to characterise the diurnal cycle of rainfall for many regions 

worldwide. For instance, in the tropics, the timing of maximum rainfall intensity is linked to the 

destabilisation of the boundary layer due to the daytime insolation that is observed during the 

afternoon over land areas; while in regions of complex terrain and predominant sea-breeze 

circulation, the peak of maxima intensity is observed from midnight to early morning (Nesbitt and 

Zipser, 2003). Several studies indicate that the afternoon peak of rainfall is caused by convective 

rainfall (i.e., generated by mesoscale convective systems or complexes) over continental regions 
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while the night-time peak is caused by light rainfall in maritime climates (Dai and Trenberth, 2004; 

Hitchens et al., 2010; Jeong et al., 2011). 

It was concluded from the current study that the diurnal cycle of 3-hour rainfall events, the probability 

of rainfall occurrence, the intensity of rainfall per occurrence and the amplitude were reasonably well 

reproduced by a RCM over southeast Australia (Evans and Westra, 2012). However, the intensity of 

observed sub-daily rainfall events was often underestimated while the occurrence was overestimated. 

Seasonal variability of sub-daily rainfall extremes. The occurrence of extreme events is associated 

with background conditions that favour the formation of clouds and subsequent rainfall. Rainfall 

extremes have a strong thermodynamic component in relation to seasonal changes that are associated 

with the variability of tropical circulation patterns. For example, the Hadley circulation over the 

tropics has a strong seasonal cycle that favours upward air motion with positive anomalies of 

moisture convergence and cloud formation over the summer hemisphere (Trenberth et al., 2000). 

Rainfall extremes also have a strong temporal component, and are associated with the rainy season 

that typically occurs during the wet and/or summer months (Chou and Lan, 2011). The monsoon in 

South Asia, for example, is responsible for most of the summer rainfall in the tropics. Rainfall 

extremes during the monsoon are the result of a reversal of the prevailing surface winds that are 

strongly seasonal due to thermal differences between land and ocean surface during the wet season 

(Kitoh et al., 2013). 

The seasonality of rainfall extremes has been used in the past to evaluate RCMs. For instance, Fowler 

and Kilsby (2003) identified significant seasonal and regional changes in the intensity of rainfall 

extreme events for the UK. Other studies have concluded that RCMs are able to reproduce the 

seasonality of rainfall extremes at daily durations (Maraun et al., 2011).  

In addition, Schindler et al. (2012) evaluated the performance of 14 RCMs being used in the 

ENSEMBLES project simulating the annual cycle of daily rainfall extremes across the UK using 

extreme value distribution. They found that most RCMs failed in the representation of the amplitude 

of the annual cycle, especially in regions with strong peaks that typically occur during summer (such 
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as in East Anglia), although they performed better in the timing of maxima occurrence and spatial 

pattern, especially during winter months. 

Studies of the diurnal cycle of rainfall have also focused on the season of the year, for example, the 

warm season when most rainfall events occur (Carbone and Tuttle, 2008). Li et al. (2008) 

investigated the diurnal cycle of rainfall in China for all of the seasons. They found there are 

significant differences in the prevailing wind and water vapour supply between the warm and cold 

season that are influenced by the East Asian monsoon. 

A study in the UK suggested that the shape of the harmonic of the seasonal cycle of monthly maxima 

in rainfall is strongly dependent on the region where the rainfall extremes occurred, predominantly 

during the summer months when convective rainfall extremes are prevalent (Maraun et al., 2009). 

Also a recent study by Zheng et al. (2015) in the Greater Sydney region showed that the seasonal 

variability of rainfall extremes for storm-burst durations from 5 to 15 minutes and from 6 to 48 hours 

increased during summer months when convective rainfall extremes typically occurred. 

2.4 Research gaps 

Climate models can facilitate the projection of sub-daily rainfall extremes in the future climate, but 

GCMs are coarse in resolution and fail to capture the local scale of rainfall extremes. In contrast, 

RCMs are run at much finer temporal and spatial resolutions, which are more suitable for 

investigating changes in sub-daily rainfall. However, it is yet to be determined if the ability of RCMs 

to reproduce different aspects of sub-daily rainfall extremes that match the available observations. 

The ability of RCMs to simulate sub-daily rainfall extremes requires a strategy of evaluation based 

not only on direct measures of whether RCMs match the statistics of extremes, also provide the right 

representation of the physical processes, such as the interaction between large-scale circulation 

systems and local scale thermodynamics which ultimately lead to the occurrence of sub-daily rainfall 

extremes over tropical and subtropical regions. 

To evaluate the capacity of RCMs in reproducing sub-daily rainfall extremes, relevant physical 

processes must be correctly simulated (Westra et al., 2014b): 

 The diurnal cycle of sub-daily rainfall extremes in terms of the timing of the maxima 

occurrence, which can provide insight about the key-rainfall generating mechanisms of rainfall 
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extremes such as local moist convection, land-sea breeze circulation, orographic forcing and 

tidal variations in surface pressure. 

 The seasonal cycle of sub-daily rainfall extremes in terms of the season of the year of the 

maxima occurrences that corresponds to the dominant synoptic atmospheric conditions. For 

instance, convective rainfall commonly takes place during summer months while stratiform 

rainfall occur during months at which large circulation systems (i.e. fronts) are predominant. 

 The configuration of synoptic mean conditions associated with the most extreme events in 

model simulation. For instance, the configuration of troughs, convergence and divergence 

patterns and zones of prevailing winds and shear associated to the most rainfall extreme 

events. 

 The relationship of atmospheric temperature with the intensity of sub-daily rainfall extremes at 

sub-daily time scales, which is compared between the observations and model simulations to 

indicate under which conditions this empirical relationship holds or is exceeded. For example, 

changes in the scaling rate associated with the latent heat released within the storm or changes 

from stratiform rainfall to convective rainfall. 

There is therefore a critical need to evaluate RCMs using this larger diversity of metrics, which is the 

focus of the following chapter. 
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Chapter 3.  Evaluation of regional climate models in simulating observed 

sub-daily rainfall extremes 

3.1  The need for a strategy to evaluate the capacity of RCMs to simulate sub-

daily rainfall extremes  

To understand the changes in sub-daily rainfall extremes, high resolution RCMs are more suitable 

than GCMs because of their better representation of smaller-scale topographic features (Gutowski et 

al., 2010). In order to quantify the reliability of RCM-derived projections, metrics or indices are often 

used to statistically compare the differences between model outputs and observations (Sunyer et al., 

2013). 

Although some previous studies have implemented RCMs to investigate statistics of rainfall 

extremes, few studies have investigated the capacity of RCMs to capture the physical mechanisms 

associated with the observed sub-daily rainfall extremes (Westra et al., 2014). These mechanisms 

are especially important, for instance, during summer when precipitation over land is often 

convective and exhibited a clear diurnal cycle (Dai and Trenberth, 2004). For instance, Evans and 

Westra (2012) investigated the ability of a RCM to simulate the diurnal cycle of 3-hour rainfall 

extremes over southeastern Australia. In other studies, Mishra et al. (2012a) evaluated the ability 

of a RCM to reproduce the seasonality of 3 and 24-hour rainfall extremes across the United States 

and Tripathi and Dominguez (2013) evaluated the ability of a RCM to reproduce individual 

extreme rainfall during summer and winter months. 

Additionally, the thermodynamic basis of the Clausius-Clapeyron relationship has been used to 

explain potential increases in rainfall extremes with warm temperatures using climate projections 

and historical rainfall observations. For instance, some studies are usually compared the C-C 

relation which provides a hypothetical increase of the water holding capacity of the atmosphere 

with surface temperature, but additional effects on temperature due to vertical fluxes contribute to 

a shift from C-C to about 2-CC rates (Lenderink and van Meijgaard, 2008; Lenderink and Van 

Meijgaard, 2010; Trenberth, 2011). These previous studies have significantly contributed to build 
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knowledge for evaluating the representation of the physical mechanisms associated with short-

duration rainfall extremes in RCMs simulations. 

This study therefore recommends implementing evaluation metrics characterising the physical 

processes of sub-daily rainfall extremes in RCMs. The use of only the statistics of rainfall extremes 

(e.g. the annual maxima of rainfall) to evaluate RCMs do not provide enough evidence for 

demonstrating that the skill of RCMs corresponds to the right representation of the underlying 

physical processes triggering sub-daily rainfall extremes and do not provide confidence that the 

RCMs can be used for investigating climate projections (especially in the future) of such extremes. 

Therefore, a strategy to assess the physical processes that produce sub-daily rainfall extremes and 

analyse the statistics of extreme rainfall events is needed, and is outlined in Figure 3.1. 

The physical processes contributing to sub-daily rainfall extremes are first examined through the 

timing of the diurnal (DC) of rainfall extremes to determine the performance of the selected RCM. 

If the performance is satisfactory, the RCM is able to correctly capture the convective pattern and 

then considered for the next condition. However, the RCM is recommended to be discarded if the 

performance is insufficient. The second condition is the seasonality (or seasonal cycle (SC)) of 

rainfall extremes. The adequate performance indicates that the RCM was driven by the right 

convective environment condition and therefore it can be assessed in the next condition. The third 

condition is the temperature scaling (TS) of sub-daily rainfall extremes. If the capability of the RCM 

is satisfactory, the RCM was able to simulate the expected intensification of rainfall extremes with 

high temperatures according to either the C-C or 2-CC rate. 

The range of conditions evaluated in the RCM provides guidance to determine the suitability of the 

RCM prior to recommending its use to investigate sub-daily rainfall extremes. However, the last 

stage to be considered is that even if these metrics are adequately simulated by the RCM, there may 

still be some errors in the RCM that can be amended by a post-processing statistical correction 

method (e.g. bias correction). Once the RCM has been bias corrected, outputs from the RCM can be 

used, for instance, as input of hydrological models in the estimation of flood risk. 

In the case that the RCM fails to reproduce these metrics, the main recommendation it is not to use 

the RCM to produce projections of rainfall extremes. Rather, efforts should be devoted to 

understanding the reason for the RCM’s poor reproduction of the selected metrics, and where 

possible identify alternative approaches for simulating extremes (e.g. alternative RCM structures or 
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statistical downscaling approaches that do not depend on modelled rainfall data) that better capture 

the key physical processes that lead to the extremes. 

 

 

Figure 3.1 Flow chart that provides guidance to decide whether a RCM can be used 

to evaluate sub-daily rainfall extremes based on the representation of 

physical processes relevant to the occurrence of such extremes. These 

processes included the diurnal cycle (DC), the seasonal cycle (SC) and 

the temperature scaling (TS) of sub-daily rainfall extremes. 
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3.2  Applying the model evaluation strategy to assess the capacity of three RCMs 

to simulate sub-daily rainfall extremes in the Greater Sydney region 

This chapter applies the strategy to evaluate RCMs in reproducing different aspects of sub-daily 

rainfall extreme events based on the framework described in Figure 3.1. This strategy focused on 

the ability of the RCMs to simulate: 

 the diurnal cycle of rainfall extremes 

 the seasonal cycle of extreme rainfall events 

 the relationship between sub-daily rainfall extremes and surface temperature 

 the observed annual maxima of sub-daily rainfall  

The model evaluation was applied to three different configurations of the WRF model (R1, R2 and 

R3). Simulations were compared with observations for 1-hour, 3-hour, 6-hour and 12-hour 

durations at 69 weather locations across Greater Sydney during 1990-2009. 

In addition, composite maps associated with the 10 most extreme rainfall events between the 

reanalysis data and model outputs are shown in Appendix 2. 

3.2.1 Data from Greater Sydney  

Greater Sydney covers all of the Sydney metropolitan area that accounts for around 46 percent of 

New South Wales population and represents an area of major natural flooding risk since the 1810s 

(INSW, 2012). 

Observational data. Two different sets of data from 1990-2009 were used in the evaluation of RCM 

simulations. These were: 

 Observational records of rainfall and surface temperature at sub-hourly durations from 69 

weather stations across Greater Sydney (Figure 3.2) were obtained from the Australian Bureau 

of Meteorology. The selected datasets consider records with more than 90% of completeness 

after removing missing or accumulated data and were aggregated into sub-daily durations. 

 Datasets of mean sea level pressure and wind (u and v components) fields were obtained from 

the Climate Forecast System Reanalysis (CFSR) database (Saha et al., 2010) and for selected 

days associated with the 10 most extreme rainfall events at Sydney Airport (station number 

066037) weather station during 1990-2009. Gridded data from the CFSR were extracted for 



 

31 

the 3-hour temporal resolution and 0.5° latitude x 0.5° longitude grid spatial resolution 

covering the Greater Sydney domain. 

 

 

Figure 3.2  Elevation map of Greater Sydney. Black dots indicate the location of 69 

weather stations. 

3.2.2  Simulations from three RCMs 

High-resolution climate modelling datasets from the WRF model (Skamarock et al., 2008) covering 

Greater Sydney were obtained from the NARCliM project (Evans et al., 2014). 

The NARCliM project is a collaboration project between the New South Wales and Australian 

Capital Territory governments to generate present and future regional climate projections for the 

CORDEX-Australasia and southeastern Australian regions (domain 1 and domain 2 in Figure 3.3). 

The latter domain has been of significant interest in the simulation of east-coast lows (Evans and 

McCabe, 2010; Evans and McCabe, 2013; Evans et al., 2011) that strongly influence the rapid 

development of storm systems, resulting in heavy rain over southeastern Australia (Speer et al., 

2009). 
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Figure 3.3 Maps showing the NARCliM domains (Evans et al., 2014). Domain 1 with an 

outer 50-km-resolution nest (left panel) and domain 2 with an inner 10 km-

resolution nest (right panel). 

As part of the NARCliM project four GCMs were selected to be downscaled: MIROC-medres 3.2; 

ECHAM5; CGCM 3.1; and CSIRO mk3.0. This selection was based on their independence ranking 

in simulating past and actual climate over southeastern Australia using different climate variables, 

such as temperature, precipitation, MSLP and 10-metre wind fields, and metrics, such as bias, 

RMSE, mean absolute error (MAE) and spatial correlation (R). Consideration was also given to their 

performance in covering the largest range of plausible future climates in Australia (Evans et al., 

2014). Moreover, three different configurations of the WRF-RCM were used for the dynamical 

downscaling of the four GCMs from coarse resolution (~100–300 km) to regional resolution (50km-

10 km). 

For each RCM, three periods of 20 years were defined:  

 historical record (1990-2009) 

 near-term prediction (2020-2039) 

 long-term projection (2060-2079). 

Simulations of the historical record used the 6-hour boundary conditions from the NCEP–NCAR 

reanalysis project (NNRP) (Evans and Westra, 2012), whereas for future climate projections each of 

the four selected GCMs provided the boundary condition in the RCMs, under the A2 emission 

scenario of the IPCC (IPCC, 2007).  
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Configurations of the WRF model. The advanced WRF model version 3.3 was used for the 

dynamical downscaling of the GCMs participating in the NARCliM project. The WRF model is a 

numerical weather prediction (NWP) system suitable for operational weather forecasting and 

numerous atmospheric research applications (Skamarock et al., 2008). The WRF model was 

developed by a multi-agency effort of the National Center for Atmospheric Research’s (NCAR) 

Mesoscale and Microscale Meteorology (MMM) Division, the National Oceanic and Atmospheric 

Administration’s (NOAA) National Centers for Environmental Prediction (NCEP) and Earth System 

Research Laboratory (ESRL), along with other research agencies and organisations (Skamarock et 

al., 2008). 

The WRF model allows the use of multiple combinations of physics and dynamics configurations in 

the model that make it flexible for use with specific applications, locations and timescales. Another 

characteristic associated with convective parameterisation is that convection in the WRF model is 

easily triggered, which does not allow time for the production of the degree of convective energy 

required for more intense rainfall (Evans and Westra, 2012; Stephens et al., 2010; Sun et al., 2006). 

Three different configurations of the WRF model were chosen as the three RCMs studied: R1, R2 

and R3. The parameterisations in these models have demonstrated good performance in simulating 

the historical record of rainfall and other climate variables, such as temperature, pressure and 10-m 

wind over southeastern Australia (Evans and McCabe, 2010; Evans and Westra, 2012; Evans and 

McCabe, 2013; Evans et al., 2011). 

Table 3.1 describes the three different parametrisations used in the configurations of the WRF. These 

include the physical schemes for the planetary boundary layer (PBL), cumulus convection, cloud 

microphysics and radiation used for the three configurations of the WRF model, which differed 

mainly in the PBL and cumulus convection schemes: 

 R1 and R3 used the Kain-Fritsch (KF) cumulus convection scheme (Kain, 2004). This 

scheme triggers convection in an adjacent 60hPa air parcel that generates positive buoyancy 

and ascends. Thereafter, the updraft, downdraft and entrainment fluxes increase gradually until 

90% of the convective availability potential energy (CAPE) is removed. Deep convection is 

activated when the updraft flux rises upwards until it reaches 3 to 4 km cloud depth. 
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 R2 used the Betts-Miller-Janjić (BMJ) scheme which triggers deep convection using 

empirically based quasi-equilibrium thermodynamic profiles instead of moist adiabatic 

conditions (Betts and Miller, 1993). The construction of the profiles and the specification of 

the relaxation timescale are adjusted for different convective regions, depending on cloud 

efficiency. This scheme is mainly used to model tropical convection. 

 R1 and R2 used the Mellor-Yamada-Janjić (MYJ) planetary boundary layer (Janjić, 1994) 

scheme. This is a one dimensional prognostic turbulent kinetic energy scheme with local 

vertical mixing that seems to be appropriate for all stable and slightly unstable flows (Mellor 

and Yamada, 1982). 

 R3 used the Yonsei University (YU) scheme which is a non-local-K scheme with an explicit 

entrainment layer and parabolic K profile in the unstable mixed layer (Hong et al., 2006). This 

type of nonlocal scheme is more applicable to convective-unstable boundary layers. 

Table 3.1  The three most independent/best performing configurations for the WRF model over south-east 

Australia according to Evans et al. (2014). 

RCM Planetary Boundary 

Layer scheme 

Cumulus convection 

scheme 

Cloud microphysics 

scheme 

Short and long-wave 

radiation schemes 

R1 Mellor-Yamada-Janjic 

(MYJ)/ Eta similarity 

Kain-Fritsch (KF) WRF Double Moment 5-

class (WDM5) 

Dudhia / Rapid Radiative 

Transfer Model (RRTM) 

R2 Mellor-Yamada-Janjic 

(MYJ)/ Eta similarity 

Betts-Miller-Janjić (BMJ) WRF Double Moment 5-

class (WDM5) 

Dudhia / Rapid Radiative 

Transfer Model (RRTM) 

R3 Yonsei University (YSU) / 

MM5 similarity 

Kain-Fritsch (KF) WRF Double Moment 5-

class (WDM5) 

NCAR Community 

Atmosphere (CAM) / 

CAM 

These three different configurations of the WRF model were used to produce a number of key climate 

variables ‒ rainfall, temperature, MSLP, 10-m wind ‒ at hourly time steps. 

3.3  Methods 

Testing the capacity of the RCMs to evaluate sub-daily rainfall extremes was undertaken in two parts. 

The first part compared the metrics characterising the physical processes associated with sub-daily 

rainfall extremes between RCM simulations and observations. The second part compared the 

statistics of sub-daily rainfall extremes, such as the annual maxima and 1 in 10-year rainfall event 

between RCM simulations and observations.   
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For each of the 69 point locations taken from the observations, the closest grid point (tcg) in the RCM 

was estimated as: 

   




 

2

mod

2

modmin lonlonlatlattcg obsobs
 (Eq. 3.1) 

where min is the minimum of the difference between the latitude (lat) and longitude (lon) 

for the observations and RCMs outputs. 

Compared to GCM results, the spatial resolution of 10 km in the RCM (grid point) is much closer to 

the the resolution for each weather location in the observations (Evans and Westra, 2012), there are 

still likely to be differences in the intensity of extreme rainfall at point locations compared to those 

at 10km resolution grids. This can be seen by considering areal reduction factors (ARFs) (Stensmyr 

et al., 2014), which show how the intensity of area-averaged rainfall decreases with increasing area. 

Nevertheless, the majority of the analysis in this chapter focuses on metrics such as the diurnal cycle, 

seasonality and temperature scaling, and these issues are less likely to be affected by the modelling 

resolution.  

The processing and statistical analysis of both observations and RCM outputs were carried out within 

the R environment (http://www.r-project.org). 

3.3.1  The diurnal cycle of sub-daily rainfall extremes  

Several studies have used the diurnal cycle of rainfall as a test bed for evaluating physical 

parameterisations in GCMs and RCMs (da Rocha et al., 2009; Evans and Westra, 2012; Jeong et al., 

2011; Sato et al., 2009; Walther et al., 2013; Wang et al., 2011). In fact, the diurnal cycle for regional 

scales in which land-sea and mountain-valley circulation are important needs to be well represented 

as part of simulating the key processes that lead to precipitation (Nesbitt and Zipser, 2003).Some of 

the typical characteristics of the diurnal cycle such as its shape, presence of a peak and its timing 

were examined using the 1-hour annual maxima for both the observations (OBS) and the three 

RCMs. The diurnal cycle of hourly annual maxima rainfall events (referred to herein as rainfall 

‘extremes’) was estimated) for the entire study region (69 locations across Greater Sydney region) 

and period (1990-2009), with 1380 events in total for the 20 year period. Thereafter, the number of 

extreme events occurring at each time of day, OD(t), was calculated using equation 3.2. 
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The occurrence of extreme rainfall events at time t = 01:00, 02:00… 24:00 hr day, represented as 

OD(t), is expressed as: 
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(Eq. 3.2) 

where T(Ei ) is the time of occurrence of the ith (i=1, 2,…,n) extreme rainfall event (Ei), 

n is the total number of extreme events of hourly durations and I is the indicator function: 



 


otherwise0

)(1
)),((

tET
tETI

i

i

 
(Eq. 3.3) 

where the variation in the value of OD(t) is defined as the diurnal cycle.  

This algorithm was applied to examine the diurnal variability of extreme rainfall events from the 69 

locations across the study region during 1990-2009 and results are presented in terms of the time of 

occurrence. 

3.3.2  The seasonality of sub-daily rainfall extremes  

Rainfall extremes at short duration have a dominant convective origin and often occur during the 

summer months (warm and wet season). As in the diurnal cycle, the seasonality of rainfall extremes 

can be used to evaluate the shape and timing of the number of extreme occurrences. The number of 

extreme events at 1-hour, 3-hour, 6-hour and 12-hour durations was estimated for each season: 

summer (December–February), autumn (March–May), winter (June–August), and spring 

(September–November). The seasonality is denoted as OS(s) and is expressed as: 
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(Eq. 3.4) 

where s |spring, summer, autumn, winter|. I is the indicator function as in equation 3.2 

and )( iES  is the season of the occurrence. 

The seasonality was estimated for the OBS and the R1, R2 and R3 simulations at 69 locations across 

Greater Sydney during 1990-2009. 

3.3.3  The relationship between sub-daily rainfall extremes and 

temperature 

The methodology of Lenderink and van Meijgaard (2008) was adapted to examine the temperature 

dependence scaling of sub-daily rainfall extremes. This relationship assumes that the intensity of 

rainfall extremes increases with warmer surface temperatures following the Clausius–Clapeyron 
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relation (~7%/°C), assuming that relative humidity is approximately constant and there is not a 

significant change in the large-scale circulation patterns (Trenberth et al., 2003). 

The scaling rate was estimated through the Clausius–Clapeyron equation (Eq. 2.2) for both the 

observations (OBS) and the three RCM simulations (R1, R2 and R3) during 1990 to 2009. For 1-

hour, 3-hour, 6-hour and 12-hour durations, the maximum intensity of rainfall events on each wet 

duration (defined as rainfall depth > 0.1 mm) was paired with the mean daily temperature. The 

rainfall-temperature pairs were sorted from low to high temperature and then split into 12 bins, with 

the same number of elements for each bin. 

Both the 99th and 99.9th percentile of rainfall intensity at sub-daily durations and the median 

temperature (considered as the representative temperature) were estimated for each bin. Then, an 

exponential regression was applied by fitting a least-square linear regression to the logarithm of the 

99th and the 99.9th percentiles of rainfall for sub-daily durations. Accordingly to Hardwick Jones et 

al. (2010), the rainfall depth is related to the change in temperature ΔT as follows: 

TPP  )1(12 
 (Eq. 3.5) 

where P is the rainfall depth and α is the regression parameter equal to 0.068 which is 

equivalent to the C-C scaling rate (6.8%/°C) at 25°C, obtained from the August‐Roche‐

Magnus approximation (Eq. 2.2). 

The regression parameter α, also known as the scaling rate, sets a scale for increasing rainfall 

extremes about the same rate as the moisture increase with temperature (Trenberth et al., 2003). This 

regression assumes a constant scaling across temperature, and the slope of the linear regression 

represents the temperature scaling of sub-daily rainfall extremes, which will be closely examined in 

the results section. 

3.3.4  Statistics of sub-daily rainfall extreme events 

The mean of the annual maxima rainfall and the 1 in 10-year rainfall event for 1-hour, 3-hour, 6-hour 

and 12-hour durations were estimated for both observations and the whole domain in the RCM from 

1990 to 2009. The 1 in 10-year rainfall events were estimated by fitting a generalized extreme value 

(GEV) distribution to the annual maxima.  
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The R software package ‘ismev’ was used for estimating the GEV family of distributions, this 

function can be expressed as: 
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where µ is a location parameter, σ is a scale parameter and ξ is a shape parameter, defined on 

the set [z :1 + ξ(z - µ)/ σ > 0], where the parameters satisfy -∞ < µ < ∞, σ > 0 and -∞ < ξ < ∞. 

The parametric form of the GEV encompasses that of the Gumbel, Frechet and Weibull distributions, 

including generalized linear modelling of each parameter (see more details in Coles (2001). 

The spatial variation in temporal trends for the mean annual maxima of rainfall at sub-daily durations 

for both observations and RCM simulations was also estimated. The mean annual maxima were 

fitted to a linear model using the linear regression function lm in the R software (http://www.r-

project.org). 

The use of quantile-quantile plots for the annual maxima of rainfall at sub-daily durations for selected 

locations in both observations and RCM simulations was also estimated in the R software. 

3.4  Results 

3.4.1 Is the observed diurnal cycle of sub -daily rainfall extremes 

realistically reproduced by RCMs?  

The number of extreme occurrences expressed as a function of the time of day (given as the local 

time) was estimated at 69 locations across the Greater Sydney region during the period 1990-2009. 

Figure 3.4 illustrates the diurnal cycle of the total number of hourly rainfall extremes estimated from 

the OBS (black line) and the R1(blue), R2(red line) and R3 (purple line). 

The occurrence of sub-daily rainfall extremes in the OBS exhibits a clear diurnal cycle which reaches 

a late afternoon peak (around 5:00 pm local time). 

Previous work by Evans and Westra (2012) over southeastern Australia (where Greater Sydney is 

also included) identified that the diurnal cycle of rainfall as mainly driven by low level thermal 

convection (generated from surface heating or evaporation), atmospheric instability (energy 
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available for convection) and low-level (700 hPa) convergence of moisture (feeding moisture into 

the storm). 

When results from R1, R2 and R3 outputs were compared with the OBS, it was found that: 

 The peak of extreme occurrences was underestimated around 25% by R1 and occurs one hour 

later than in the OBS. Moreover, the number of extreme occurrences was overestimated from 

early night to the noon hours. 

 R2 overestimated up to 15% of the peak number of extreme occurrences, and estimated 

activity occurring two hours later than in the OBS. The number of occurrences in R2 

fluctuated; they were underestimated from afternoon to late evening and overestimated until 

midnight. 

 Two peaks of extreme occurrences were found in R3. However, the higher peak 

underestimated the number of extreme occurrences by approximately 14% and the peak was 

found up to three hours later than the OBS. 

The results overall indicate that R1, R2 and R3 were able to capture reasonably well the observed 

diurnal cycle of rainfall extremes over the region, with a realistic representation of the amplitude and 

phase of the diurnal variability of rainfall extremes and timing in the peak of rainfall extreme 

occurrence. However, some discrepancies in the amplitude of the diurnal cycle and in the delay of 

timing of the peak occurrence can be attributed to the three different parameterisation schemes used 

in the configuration of the WRF model (Table 3.1). For instance, the YSU PBL scheme in 

combination with the KF scheme may influence in the late activation of convection that caused a 3-

hour delay in the timing of the peak of rainfall occurrence found in R3. 

The total number of wet events (rainfall amount higher than 0.1mm/hour) was also analysed (not 

shown) for each model simulation and results indicated that the total number of wet events were 

more frequent than in the observations but less intense. This finding also agrees with a well-known 

issue in climate models when investigating wet events and it is identified as the “drizzling effect” 

where climate models tend to overestimate the frequency of light precipitation (0.1mm – 1 mm) and 

underestimate the intensity of heavy precipitation (Dai, 2006).  
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Figure 3.4 Diurnal cycle of hourly rainfall extremes in the observations (black line) and the 

R1 (blue line), R2 (red light) and R3 (purple line) simulations for 69 locations 

across Great Sydney during 1990-2009. 
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3.4.2  Is the observed seasonality  of sub-daily rainfall  extremes 

realistically reproduced by RCMs?  

The seasonal variability or seasonality of the number of extreme rainfall events at sub-daily durations 

was estimated in the observations (OBS) and RCM simulations at 69 locations across Greater Sydney 

during 1990-2009. Figure 3.5 shows the seasonality of rainfall extremes at 1-hour, 3-hour, 6-hour 

and 12-hour durations for both the OBS (black bar) and the R1 (blue bar), R2 (red bar) and R3 (purple 

bar) simulations. 

A recent work by Zheng et al. (2015) suggests that observed hourly rainfall extremes over the same 

region (Greater Sydney) are mainly of convective origin and summer-dominated, but that for longer 

duration rainfall extremes are mainly driven by large-scale circulation patterns, such as frontal 

systems that occur during winter months and along the Australian east coast. In agreement with the 

previous study, the seasonal distribution of sub-daily rainfall extremes in the observations was 

characterised by a peak of maxima occurrence during summer months for all durations and the 

minima occurrence during winter for short durations and during autumn for long durations. When 

comparing the seasonality of sub-daily rainfall extremes in three RCM-simulations with the OBS, it 

was found that: 

 For the 1-hour duration, the observed peak of maxima occurrence during summer and the 

minima occurrence during winter is overall well reproduced by all the RCMs. R1 has the best 

performance in the seasonality of hourly rainfall extremes.  

 For the 3-hour duration, the observed peak of maxima occurrence in summer was better 

simulated by R1; while the minima occurrence in winter was better captured by R3. 

 For the 6-hour and 12-hour durations, the observed peak of maxima occurrence in summer 

was better simulated by R3; while the minima occurrence in autumn was better reproduced by 

R2. 

The results showed that the seasonality of rainfall extremes for short durations was reasonably 

simulated by R1 and R3. Therefore, it is suggested that the KF convective scheme used in both R1 

and R3 was able to capture the dominant thermal convection during summer months. For longer 

durations, this scheme was also able to simulate the synoptic and mesoscale convergence over the 

east coast lows during winter months.  
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Figure 3.5 Seasonality of sub-daily rainfall extremes in the observations (black bars) 

and R1 (blue bars), R2 (red bars) and R3 (purple bars) simulations for 69 

locations across Greater Sydney during 1990-2009. 
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3.4.3  Is the observed relationship between sub -daily rainfall extremes and 

temperature reproduced by RCMs?  

The exponential regression between the 99th and 99.9th percentiles of sub-daily rainfall and surface 

temperature was estimated in the OBS and R1, R2 and R3 simulations at 69 locations across Greater 

Sydney during 1990-2009. 

Figure 3.6 illustrates the scaling relationship between 1-hour, 3-hour, 6-hour and 12-hour rainfall 

extremes and daily mean temperature for both observations (the OBS) and R1, R2 and R3 outputs. 

Exponential regression (α) was used to characterise the scaling of rainfall extremes with temperature 

and then identified scaling rates following the Clausius-Clapeyron principle. Results in the OBS 

suggest that at hourly durations most locations across Greater Sydney increased following the C‐C 

relationship (~7%/°C) for temperature ranges up to 20°C. This concurs with a previous study by 

Hardwick Jones et al. (2010) which had found that over the eastern region of Australia the 99th 

percentile of hourly rainfall intensity scales with the mean temperature. 

When the temperature scaling was compared with the OBS, the results indicated that: 

 For hourly durations, scaling rates were roughly consistent with the observed C-C rate for R2 

and R3 and slightly different in R. These rates approximately followed the C-C rate for 

temperature ranges up to 16°C, and after this range the scaling relationship decreased with 

higher temperatures ranges. 

 For durations greater than 1-hour, the scaling of sub-daily rainfall extremes was not found in 

agreement with the OBS. 
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Figure 3.6 Exponential regression between the 99th percentile of sub-daily rainfall 

and the surface temperature for both the OBS (black line) and R1 (blue 

line), R2 (red line) and R3 (purple line) outputs across Greater Sydney 

region during the period 1990-2009. Dashed grey lines correspond to the 

C-C rate (6.8%/°C). 

The temperature scaling for the 99.9th percentile was found to be much closer to the C-C scaling rate. 

Figure 3.7 illustrates the scaling relationship between 1-hour, 3-hour, 6-hour and 12-hour rainfall 

extremes and daily mean temperature for both observations (the OBS) and R1, R2 and R3 outputs. 

When the temperature scaling was estimated and compared with the OBS, it was found that: 

 The best performance is found at hourly durations for temperature ranges up to 23°C. This 

scaling is consistent with the observed C-C rate, especially for R3. 

 For durations greater than 1-hour, the scaling rates decreased but model simulations were still 

consistent with observations.  
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Figure 3.7 Exponential regression between the 99.9th percentile of sub-daily rainfall 

on wet days and the surface temperature for both the OBS (black line) 

and R1 (blue line), R2 (red line) and R3 (purple line) outputs across the 

Greater Sydney region during the period 1990-2009. Dashed grey lines 

correspond to the C-C rate (6.8%/°C). 

The scaling parameter (α) in Eq. (3.5) was estimated at 69 point locations in the OBS and the whole 

Greater Sydney region for R1, R2 and R3 simulations during the period 1990-2009. Figure 3.8 shows 

the spatial variability of α for 1-hour, 3-hour, 6-hour and 12-hour durations for both observations 

(circles) and R1, R2 and R3 outputs. 
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Results in the OBS fitted α values about the C-C rate, particularly over the northern part of Greater 

Sydney, mainly observed at short durations. For longer durations, the α values declined and also 

became negative, particularly near the coastline. 

Comparing results in the OBS with the fitted α values from R1, R2 and R3, it was found that: 

 Noticeable spatial differences were found among the three outputs. Results from R2 and R3 

indicated an increase of α values that was also found for longer durations, whereas R1 

exhibited the lowest α values over the northern Greater Sydney region. 

 For hourly durations, R2 and R3 better represented the spatial variability of the observed α 

values, particularly over inland areas, while α values were underestimated by R2. 

 For longer durations than 1-hour, α values decreased in R1, R2 and R3 as had been found in 

the observations. However, results in R2 and R3 pointed to an increase in α values along the 

northern and central inland. 

The scaling parameter was approximately reproduced by R2 and R3 for hourly durations. However, 

at long durations most of the models slightly overestimated but captured the decrease of α values 

along the coastline. 

Results from R1, R2 and R3 suggest that the intensity of rainfall extremes, particularly at hourly 

durations approximately increased with temperature following the C-C scaling rate, in agreement 

with a previous study by Hardwick Jones et al. (2010). Although scaling rates close to 2-CC 

(~14%/°C) were found from 3-hour to 12-hour durations over north inland and ocean parts in R2, 

the scarcity of observations over those regions limited the evidence to support the simulated 2-CC 

scaling rate. 
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Figure 3.8 Spatial variability of the exponential regression fitted to 1-hour, 3-hour, 

6-hour and 12-hour rainfall extreme between observations (circle) and 

R1, R2 and R3 outputs. Scaling ranges in green colour indicate values 

lower than the C-C rate(< 7%/°C), while rates approximately the C-C 

(~7%/°C) are in white and rates higher than the C-C rate (>7%/°C ) are in 

red.  



 

48 

3.4.4  Are the statistics of observed sub-daily rainfall  extremes correctly 

reproduced by the three RCMs?  

The mean of the annual maxima of rainfall for sub-daily durations in observations at 69 locations 

across Greater Sydney region was compared with simulations in R1, R2 and R3. Figure 3.9 shows a 

set of spatial maps of the mean of the annual maxima (rainfall depth in mm) for 1-hour, 3-hour, 6-

hour and 12-hour durations in both the observations (circles) and the R1, R2 and R3 outputs during 

1990-2009. 

Results in the observations showed high rainfall depths near to the coastline (particularly in the 

centre) and low values over inland regions (especially over the south and centre parts) for most of 

the durations. When the mean of the annual maxima in the observations was compared with R1, R2 

and R3, it was found that: 

 The hourly rainfall depth was overall underestimated by the RCMs; R1 and R2 underestimated 

it by up to 45% and R3 by up to 40%. 

 The mean of the annual maxima at 3-hour duration was underestimated by R2 up to 40%, but 

overestimated by R1 and R3 up to 50%. 

 For the 6-hour duration, the rainfall depth was overestimated by R1 and R3 up to 70% but 

underestimated by R2 up to 40%.  

 The mean of the annual maxima at 12-hour duration was overall overestimated for the three 

RCMs, particularly in R3 and over inland part where the rainfall depth was overestimated 

more than twice the observations. 

The observed mean of the annual maxima was overall underestimated along the coastline and for 

hourly durations by the three RCMs. R1 and R3 had better spatial consistencies along the coastline; 

while R2 was able to reproduce the spatial consistency over inland parts for most of the durations. 

The mean of the annual maxima of rainfall in the observations was underestimated for short durations 

(e.g. 1-hour to 3-hour) and mainly overestimated for longer durations (e.g. 6-hour to 12-hour) by the 

three RCMs. These findings also show that none of the three RCMs was able to fully reproduce the 

observed sub-daily rainfall extremes over Greater Sydney. 
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Figure 3.9 Map showing the mean annual maxima of rainfall for 1-hour, 3-hour, 6-hour 

and 12-hour rainfall durations from the observations (circles) and R1, R2 

and R3 across the Greater Sydney region from 1990 to 2009. 
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To provide further insight into the capacity of the three RCMs to capture the IFD relationships, a 

more detailed investigation into six different sites across Greater Sydney was undertaken by using 

quantile-quantile (Q-Q) plots. 

For six selected sites across Greater Sydney, Figure 3.10 shows a set of Q-Q plots of the annual 

maxima of rainfall (rainfall depth in mm) for 1-hour, 3-hour, 6-hour and 12-hour durations in R1(blue 

round points), R2 (red square points) and R3 (purple triangle points). Three sites are located near 

low-elevation coastal regions (right plots); whereas the other three sites are over inland and two of 

them are in high elevation parts (left plots). 

The magnitude of the annual maxima in the three RCMs was compared using the 45-degree reference 

black line constructed from the observations at each site. Results showed that rainfall depths were 

mainly underestimated in low elevation coast parts for most of the durations, especially evident in 

R2. In contrast, rainfall depths were mainly overestimated for high elevation inland parts and for 

longer durations, especially evident in R3. The results of the annual maxima of rainfall also suggest 

that the performance of the different RCMs varied depending on the location (e.g. coastal or inland 

parts) and duration considered. For instance, the best performance found over low-elevation coastal 

parts was in R3 for short duration and R1 for longer durations; whereas for inlands part was in R2. 

The influence of elevation, latitude and longitude in the spatial properties of sub-daily rainfall 

extremes are presented and detailed in Section 2.4 of the Appendix. Results from the spatial 

properties indicated that simulations from R1 had the best performance in capturing the spatial 

correlation of observed sub-daily rainfall extremes across Greater Sydney. 

Additionally, the fitted GEV was scaled at each location by the mean annual maxima over the 20 

year period for both the OBS and the three RCMS and then compared with the 1 in 10 year estimate 

in the growth curve (Supplementary Figure 3 and Supplementary Figure 4). 
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Figure 3.10  Quantile-quantile plots of the annual maxima of rainfall for 1-hour, 3-hour, 6-hour and 12-hour durations for R1 (blue points), R2 

(red points) and R3 (purple points) simulations at six locations across Greater Sydney during the period 1990-2009. The diagonal 

in the QQ plot represent the normal line in the observations. 

 



 

52 

The annual maxima of rainfall for sub-daily durations were fitted to the GEV distribution to estimate 

the 1 in 10-year rainfall event for 1-hour, 3-hour, 6-hour and 12-hour durations for both the 

observations and the three RCMs over Greater Sydney. Figure 3.11 shows the spatial distribution of 

the 1 in 10-year rainfall event (also rainfall depth in mm) in the observations (circles) and the R1, R2 

and R3 outputs over Greater Sydney region during 1990-2009. 

Results in the observations showed high rainfall depths near to the coastline (particularly over the 

centre parts) and low rainfall depths over south and centre inland parts. When the observed rainfall 

depths for the 1 in 10-year rainfall event were compared with simulations in R1, R2 and R3, it was 

found that: 

 For 1-hour duration, rainfall depths were overall underestimated by the three RCMs. R1 and 

R2 underestimated the rainfall depth up to 60% along the coastline, whereas R3 

underestimated it up to 40% over inland parts. 

 For 3-hour duration, rainfall depths were overestimated by R1 and R3 up to 60% over inland 

parts and underestimated by R2 up to 40% along the coast. 

 For 6-hour duration, the intensity of the 1 in 10-year rainfall event was overestimated by R1 

and R3 and underestimated by R2. R3 overestimated the intensity of rainfall up to 65%, 

whereas R2 underestimated it up to 45% over inland parts. 

 For 12-hour duration, the intensity of the 1 in 10-year rainfall event was mainly overestimated 

by R3 and R1 and slightly underestimated by R2. R3 overestimated the intensity of rainfall for 

most locations and up to 80% over inland parts, whereas R2 underestimate the intensity of 

rainfall up to 30% along the coastline. 

The rainfall depth for the 1 in 10-year rainfall event was overall underestimated by the three RCMs 

for hourly durations but overestimated for longer durations. R2 tended to underestimate the 1 in 10-

year rainfall events over coast parts for all durations; while R3 tended to overestimated rainfall depths 

near the coastline for most of the durations. Similar to the mean of the annual maxima, these finding 

indicate that none of RCMs over-performed the observed sub-daily rainfall extremes over the region. 

  



 

53 

 

 

Figure 3.11  Map showing the 1 in 10-year extreme rainfall event estimated by fitting 

the GEV distribution to the observations (circles) and to simulations for 

the R1, R2 and R3 over Greater Sydney region from 1990 to 2009. 
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The annual maxima of rainfall for 1-hour, 3-hour, 6-hour and 12-hour durations were also fitted by 

a linear regression, in which the slope of the fitting was used for characterising the trend of annual 

maxima in the observations (circles) and in simulations for the three RCMs during 1990-2009 over 

Greater Sydney region, as shown on a spatial map in Figure 3.12. 

Results in the observations showed that the trend of annual maxima of sub-daily rainfall was mostly 

positive, particularly over inland parts and for short durations (e.g. 1-hour and 3-hour); while the 

trend was negative for longer durations (e.g. 6-hour and 12-hour), particularly in the centre coast 

parts. These results also agreed with a previous study by Zheng et al. (2015) in which the trend of 

the annual maximum decreased for durations longer than 3 hours. 

When the spatial trend in the observations was compared with the three RCMs, it was found that: 

 The trend of annual maxima of rainfall at hourly durations and for most locations was mainly 

underestimated by R1 and R2. The observed trend was overall positive and better reproduced 

by R2 and R3, especially along the coastline. 

 The trend of annual maxima at 3-hour durations was underestimated by R1 and overestimated 

by R2 and R3, particularly in the centre coast. The observed trend was mainly positive over 

inland parts (captured by R2 and R3) and negative along the coastline (captured by R1). 

 The trend of the annual maxima at 6-hour duration was mainly overestimated by the three 

RCMs, especially near to the coastline. The negative trend of the annual maxima along the 

coastline was mostly captured by R1. 

 The trend of the annual maxima at 12-hour duration was overall overestimated by all RCMs. 

R1 and R3 overestimated the negative the trend along the coastline and R2 significantly 

overestimated the trend over centre inland and coast parts. 

The results in the three RCM showed spatial variation in the trend of annual maxima with mostly 

overestimations for 3-hour to 12-hours durations. The observed negative trend along central and 

south costal parts and for longer durations was captured by R1 and R3 but not reproduced by R2, 

which instead tended to highly overestimate the trend. Moreover, when the trend of annual maxima 

of rainfall extremes in the RCMs was closely examined, results indicated that the linear trend was 

only significant for approximately eight sites across Greater Sydney (not shown). 
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Figure 3.12  Trend of annual maxima for 1-hour, 3-hour, 6-hour and 12-hour 

durations for the observations (circles) and R1, R2 and R3 simulations at 

Greater Sydney during the period 1990-2009. 
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Overall, these results indicate that the duration and location considered significantly influenced the 

performance of RCMs, with some models performing better for certain parts and durations. 

However, the statistics applied to sub-daily rainfall extremes did not provide insight into whether the 

RCMs are getting the intensity of rainfall extremes due to the right representation of the underlying 

physical processes that lead to the occurrence of such extremes or whether RCMs outputs are suitable 

for predicting future changes in sub-daily rainfall extremes. For this reason, the implementation of 

evaluation metrics characterising the relevant physical processes of sub-daily rainfall extremes is 

presented in the following section. 

3.5  Summary and conclusions 

A strategy to evaluate RCMs in simulating sub-daily rainfall was described in this chapter. This 

strategy was used to evaluate different aspects of sub-daily rainfall extremes using three different 

configurations of the WRF model (R1, R2 and R3) over Greater Sydney during 1990-2009. 

This chapter explored the performance of WRF in simulating sub-daily rainfall extremes using both 

direct statistical measures of sub-daily rainfall, and indirect measures (i.e. the diurnal cycle, seasonal 

cycle, temperature scaling and large-scale synoptic patterns) that indicate whether the model 

correctly simulates the physical processes that lead to the climate extremes. Commencing with the 

direct measures, the results are summarised as follows: 

 The observed magnitude of the mean annual maxima of rainfall and the 1 in 10-year rainfall 

event was underestimated for short durations by the three RCMs. However, for longer 

durations the observed rainfall depth was better reproduced along the coastline by R3.  

 The change from positive to negative in the observed trends of annual maxima was partially 

captured and mainly overestimated by the three RCMs. However, the negative trend for longer 

durations was better simulated by R1. 

 The use of Q-Q plots for the annual maxima showed significant differences in the performance 

of the different RCMs, which depended on the location and duration considered.  

 The overall statistics of sub-daily rainfall extremes were partially reproduced by the RCMs, 

although none of the RCMs was superior for all the durations and analysis considered. 

Applying the flow chart articulated in Figure 3.1, the generally poor performance in simulating the 

direct statistics of sub-daily extremes would suggest that bias correction would be necessary in order 

to use the extremes data for developing future projections; however, this should only be undertaken 
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provided that the model shows sufficient performance in the set of physically based metrics described 

in Section 3.1. 

The outcomes of the analysis are as follows: 

 The observed diurnal cycle of hourly rainfall extremes was overall well captured by the three 

RCMs with a late evening peak of rainfall extreme occurrence, although the timing of the peak 

was delayed up to three hours. 

 The observed seasonality of rainfall extremes was overall well simulated by the three RCMs, 

particularly for short durations. However, the RCMs failed in capturing the highest occurrence 

of rainfall extremes during winter and the lowest during summer across Greater Sydney. 

 The temperature scaling rate was overall reproduced, particularly at hourly durations when the 

temperature scaling in the observations was clear. Moreover, the temperature scaling in hourly 

simulations became closer to the observations when the 99.9th percentile of sub-daily rainfall 

was analysed. The scaling rate from the RCMs approximated the CC rate for hourly durations, 

whereas scaling rates much lower than the C-C rate were found for longer durations. 

Based on these results, it can be concluded that although R1, R2 and R3 performed differently for 

the statistics of sub-daily rainfall extremes, with mainly underestimations at short durations and 

overestimations at longer durations, the underlying physical processes were overall realistically 

simulated by these models. This suggests that the RCM simulations might remain useful for 

investigating potential changes in sub-daily rainfall extremes, as will be explored in the following 

chapter. 
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Chapter 4.  Exploring future changes in sub-daily rainfall extremes using 

RCMs over Greater Sydney  

There is growing scientific evidence that global warming resulting from high emissions of GHGs, 

has contributed to the increase in the intensity and frequency of rainfall extremes, particularly at short 

durations (Hanel and Buishand, 2010; IPCC, 2013; Lenderink and van Meijgaard, 2008). Indeed, 

this increase is expected to continue with a future warmer climate, enhancing the flood risk in small 

urban and rural catchments susceptible to flash flooding, with devastating socio-economic and 

environmental impacts. 

Long term projections of short-duration, flood-producing extreme rainfall events represent an 

important source of the types of information that are required for informing decisions related to 

mitigation and adaptation to climate change (Kendon et al., 2008). Long term projections of extreme 

weather events, such as severe rainfall, are vital to the development of meaningful rural and urban 

planning policies, for example the design of flood defences and general engineering infrastructure 

(Maraun et al., 2010).  

However, the large uncertainties associated to future changes on GHGs, population growth and 

development and land use, represent a big challenge for projecting changes to flood risk based only 

on historical records. Therefore, it is important to consider results from observational, modelling and 

theory studies, with a focus on the physical processes, in order to understand how the intensity of 

sub-daily extreme rainfall might respond to a warmer climate (Westra et al., 2014b). 

4.1  Future changes in rainfall extremes: Temperature, season and region 

As temperature increase, the risk of flooding due to short-duration extreme burst rainfall is expected 

to increase with future climate (Conrad and Ashish, 2015; Hurkmans et al.). Given the short and 

intense nature of these bursts, convective rainfall such as summer downpours are the dominant 

rainfall type in relation to urban flooding, as revealed by high resolution RCMs (Gregersen et al., 

2013; Kendon et al., 2014). 

RCMs are like to remain the main source of information for future projections of changes in sub-

daily extreme rainfall and therefore it will be required to study not only quantities and trends but also 
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to explore different aspects of sub-daily rainfall extremes associated to the physical mechanism and 

theories that can provide insight about likely changes, as found in the previous chapter. 

4.1.1 The response of rainfall extremes to increased temperature  

The relationship between rainfall intensity and atmospheric temperature provides a theoretical basis 

for the intensification of rainfall extremes with future changes in climate (Allen and Ingram, 2002; 

Trenberth, 2011). Rainfall extremes are expected to increase with higher atmospheric temperature 

because a warmer atmosphere can hold more moisture, which will eventually fall as rain. Two 

mechanisms are commonly thought to be important in determining future changes to extreme rainfall 

– the water-holding capacity of the atmosphere, and the dynamics of storm-generating systems: 

 The water-holding capacity of the atmosphere will increase at the rate of approximately 

7%/°C, predicted by the Clausius–Clapeyron (C-C). It is commonly assumed that the rainfall 

rate will increase in proportion to this rate, at least under conditions when the influence of 

dynamics and precipitation efficiency are not significant (Trenberth et al., 2003). 

 Rainfall extremes can also increase more rapidly than the C-C rate, with rates up to double the 

C-C rate (super C-C) due to increases in precipitation efficiency with warming (Singh and 

O'Gorman, 2014). Changes in the dynamics of the atmosphere and the convective cloud, the 

size of the convective cloud, and the moist adiabatic temperature profile will also contribute to 

extreme rainfall events (Trenberth et al., 2003, O’Gorman and Schneider, 2009). 

The notion that the C-C rate might constrain future changes in rainfall extremes (particularly at short 

duration) has assumed similar atmospheric conditions to the present climate, such as fairly constant 

relative humidity and no significant changes in the large-scale atmospheric circulation, but with 

higher temperatures and specific humidity values (Lenderink and van Meijgaard, 2008). By contrast, 

Lenderink and van Meijgaard (2008) found that hourly rainfall extremes increase by about twice the 

C-C rate in some regions in central Europe because the increase in latent heat release appears to 

intensify low-level moisture convergence in convective rainfall, giving rise to the greater C-C rate. 

This accords with a recent study from Harding and Snyder (2015) indicating that in regions and 

seasons governed by dynamically derived convective rainfall, changes in rainfall extremes cannot be 

solely predicted by the general thermodynamic contribution, because at mid-latitudes in summer, 
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extratropical rainfall extremes from mesoscale convective systems (i.e., cyclones and fronts) 

predominate; therefore, the contribution of the scaling is less significant (O’Gorman, 2015). 

4.1.2 Future changes in rainfall extremes with significant regional and 

seasonal variations 

Future predictions from climate models suggest changes in the intensity and frequency of rainfall 

extremes associated with differences in the duration, location and season of the year. For example, a 

very high resolution model suggests a future intensification of hourly rainfall extremes during 

summer, which are expected to increase at the end of the 21st century over the UK (Kendon et al., 

2014). 

Results from model simulations also indicate that more intense rainfall extremes might be related to 

the early onset of convection in spring (warm season) over tropical regions (Trenberth, 2011). 

However, this early onset can enhance the chance of drought in early summer (August–September) 

in regions such as the North Central US (Harding and Snyder, 2014). 

The frequency of extreme rainfall is expected to increase in high latitudes and tropical regions and 

in winter in the northern mid-latitudes (IPCC, 2012). For example, future scenarios of daily rainfall 

extremes, based on the HadCM3 and ECHAM5 GCMs over Sweden, show a general increase in the 

frequency of wet days during winter and a decrease in summer, using the 90th percentile of rain day 

amounts (Chen et al., 2015). 

High resolution climate models. RCMs are one of the primary tools for investigating changes in 

rainfall extremes in the future because they have demonstrated the capacity to reproduce past records 

at daily (Buonomo et al., 2007; Durman et al., 2001; Fowler et al., 2005; Frei et al., 2006) and sub-

daily durations (as shown in the previous chapter), and this has increased confidence in their use for 

future projections (Chan et al., 2014; Gregersen et al., 2013). 

However, the ability of RCMs to reproduce past and present records may not be a sufficient indicator 

of the capacity of RCMs to operate effectively in a period of climate change in the future. Therefore, 

both the thermodynamic contribution and regional and seasonal changes are important features for 

providing insight into possible future changes in sub-daily rainfall extremes. The validity of such 

features in the circumstances of future climate change using RCMs is the focus of this chapter.  
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4.2  Future changes in sub-daily rainfall extremes using RCMs 

Results from the three different configurations of the WRF model (R1, R2 and R3) demonstrated an 

overall reasonable performance in reproducing the physical processes of sub-daily rainfall extremes 

over Greater Sydney, as described in Section 3.4. This capability in model simulations was 

considered satisfactory to use RCMs projections to explore future changes in sub-daily rainfall 

extremes, although it was anticipated that some discrepancies in the models will remain for future 

projections, for example negative bias in the intensity of rainfall extremes, and therefore historical 

simulations were compared with two future simulated periods within the model domain. 

RCM simulations of the future climate were obtained from the NARCliM project (Evans et al., 2014) 

and forced by the GCM-MIROC under the A2 high emission scenario of the IPCC (IPCC, 2007). 

Future simulations correspond to the near-term prediction (2020-2039) and long-term projection 

(2060-2079) periods that were also compared with the historical period (1990-2009) in model 

simulations over Greater Sydney. 

4.2.1  Data  

As in the previous chapter, hourly model outputs for Greater Sydney were obtained from the 

NARCLIM project (Evans et al., 2014), for the near-term and long-term future periods. R1, R2 and 

R3 also correspond to three different physics scheme configurations of the WRF model as described 

in Table 3.1. 

For future projections, the lateral boundary condition for the three RCMs was provided by the GCM 

Model for Interdisciplinary Research on Climate (MIROC) version 3.2. The MIROC 3.2 is one of 

five GCMs participating in the NARCliM project, and was chosen for use in this current study 

because of its high independence ranking when simulating past climate records over south-east 

Australia (Evans and Ji, 2012). 
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The historical period in the RCMs. Hourly outputs of temperature and rainfall from R1, R2 and 

R3 during 1990-2009 over Greater Sydney, described in Section 3.2.4, were used as a baseline. 

Future projections in RCMs. Hourly simulations of temperature and rainfall in R1, R2 and R3, but 

for the near-term prediction (2020-2039) and long-term projection (2060-2079) periods under the 

A2 emission scenario of climate change, were used for investigating potential future changes in sub-

daily rainfall extremes over Greater Sydney. 

The main differences between the historical period and both future periods in the three RCM 

simulations are outlined in Table 4.1. 

Table 4.1 Differences between the historical, near-term and long-term future simulations in the RCMs 

Period Period name 
Lateral boundary condition 

in the three RCMs 
Future GHGs emission 

scenario 

1990-2009 historical NNRP NA 

2020-2039 near-term future MIROC 3.2-medres A2 emission scenario 

2060-2079 long-term future MIROC 3.2-medres A2 emission scenario 

For each RCM (R1, R2 and R3), model simulations were named accordingly to the simulated period 

(e.g. R1 1990-2009). 

4.3  Methods 

The potential influence of future climate change in some of the well-established features of sub-daily 

rainfall extremes reproduced by the three RCMs during the historical period are investigated for the 

near-term and long-term future periods, and these include: 

 the diurnal cycle of hourly rainfall extremes  

 the seasonality of sub-daily rainfall extremes 

 the intensification of sub-daily rainfall extremes with temperature 

 the annual maxima of sub-daily rainfall extremes. 

These features that are associated to changes in sub-daily rainfall extremes were also investigated 

for 69 locations across Greater Sydney (Figure 3.2) and for the entire domain in the simulations 

(only for the temperature scaling and the annual maxima of rainfall extremes). 
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4.3.1  Future changes in the diurnal cycle of sub-daily rainfall  extremes  

In Chapter 3, it was reported that the occurrence of hourly rainfall extremes over Greater Sydney 

exhibits a clear diurnal cycle with a late afternoon peak as a result of thermal convection and this 

feature was mostly captured by the three RCM simulations, although the timing of the peak 

occurrence was offset up to 3 hours later than in observations in one of the RCMs. Despite this, the 

overall performance of the RCMs is considered sufficient to investigate the influence of future 

climate change on the diurnal cycle of hourly rainfall extremes. 

The diurnal cycle of hourly rainfall extremes was explored for the near-term prediction and the long-

term projection periods and compared with the historical period at 69 grid points (corresponding to 

the same location of observations used in Chapter 3) across Greater Sydney. 

The annual maxima of hourly rainfall extremes were distributed in terms of the time of day to 

estimate the total number of extreme occurrences, as in Eq. 3.3 (Section 3.3.1). For each RCM, the 

diurnal variability and peak of rainfall extreme occurrence were analysed during the near and long-

term future projections and then compared with the historical period in simulations. 

4.3.2  Future changes in the seasonality of  sub-daily rainfall extremes  

Observations of the seasonality of the sub-daily rainfall extremes in Greater Sydney during 1990-

2009 revealed the highest occurrence of extremes during the warm summer season, likely resulting 

from convective thunderstorms over the region. 

This seasonal feature was better captured by hourly simulations than by longer durations in R1, R2 

and R3 during the historical simulated period. Therefore, the three RCMs were considered as tools 

to investigate the likely influence of future climate change on the seasonality of sub-daily rainfall 

extremes over Greater Sydney. 

The seasonality of rainfall extremes for future simulations was estimated as in Section 3.3.2 The 

annual maxima of rainfall extremes at sub-daily durations were distributed by season (i.e., summer, 

autumn, winter and spring) in order to estimate the total number of extreme occurrences in each 

season for 69 locations across Greater Sydney, as in Eq. 3.4. The seasonality of sub-daily rainfall 
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extremes for the near-term and long-term future periods was compared with the historical period for 

the three RCMs. 

4.3.3  Future changes in the scaling of sub-daily rainfall  extremes with 

temperature 

The increase of sub-daily rainfall extremes with temperature found in observations of weather in 

Greater Sydney is considered to be a robust concept by which to investigate future likely changes in 

sub-daily rainfall. This relationship was estimated for the near-term prediction and long-term 

projection periods at 69 grid points across Greater Sydney for R1, R2 and R3. 

The scaling rate and exponential regression were estimated as in Section 3.3.3. The exponential 

regression was fitted to both the 99th and 99.9th percentile of sub-daily rainfall and the mean daily 

temperature using Eq. 3.5. Then, the α  fitting was again used to characterise the scaling rate during 

the future simulated periods, and then to compare them with values obtained during the historical 

period in three RCMs. 

4.3.4  Future projections in the annual maxima of sub-daily rainfall 

extremes 

The mean annual maxima of rainfall for 1-hour, 3-hour, 6-hour and 12-hour durations were estimated 

in the R1, R2 and R3 simulations for the entire domain of Greater Sydney, for near-term and long-

term future periods. Then, the ratio of the magnitude of the mean of the annual maxima of rainfall 

between both future periods and the historical period was estimated as: 

historical

future

anualmean

annualmean
ratio

max

max


 

(Eq. 4.1) 

The ratio was also estimated for each grid point in the model and then compared with the historical 

period using simulations (baseline) for the near-term future period and the long-term future period 

in the three RCMs. 
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4.4  Results 

4.4.1  Is the diurnal cycle of rainfall extremes  for future projections 

changing from the historical period in simulations?  

The diurnal cycle of hourly rainfall extremes was estimated for the near-term and the long-term future 

periods, and then compared with the historical period in three RCMs. Figure 4.1 shows the simulated 

diurnal distributions of the total number of extreme rainfall events at 69 locations across Greater 

Sydney for the historical period, the near-term and the long-term future periods. 

The results from the three RCMs and for the three simulated periods indicated that: 

 Extreme rainfall events exhibited a strong diurnal variability, but usually with a late afternoon 

peak, which agreed with results from the observations shown in the previous chapter. 

 The R1 simulations exhibited a late afternoon peak with the highest diurnal peak reached by 

the long-term future period (Figure 4.3 top panel). 

 The R2 and R3 simulations also exhibited a late afternoon peak but with the highest diurnal 

peaks reached during the near-term future periods (Figure 4.3 middle and bottom panels). 

 Comparing the diurnal cycle of hourly rainfall extremes for future and past simulations, it was 

found that there were no significant changes in the shape or amplitude of the diurnal cycle for 

the two future simulated periods (2020-2039 and 2060-2079) in comparison with the past 

period (1990-2009). 

The results suggest that the strong diurnal cycle of rainfall extremes found in the simulations was not 

influenced by the increase of GHGs emissions in future periods, and according to results from the 

three RCMs, local rainfall extremes might still be dominated by convective rainfall with a late 

afternoon peak of rainfall extremes occurrences for the region of Greater Sydney. 
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Figure 4.1  Diurnal cycle of extreme rainfall occurrences for 69 locations across Greater Sydney 

obtained from R1 (blue lines), R2 (red lines) and R3 (purple lines) simulations for the 

historical (light colour lines), near-term future (medium colour lines) and long-term future 

(dark colour lines) periods.  
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4.4.2  Is the seasonal cycle of sub-daily rainfall extremes in future 

projections changing from the historical period in simulations?  

The seasonal cycle of sub-daily rainfall extremes was estimated for the near-term and the long-term 

future periods and then compared with the historical period in the R1, R2 and R3 simulations. Figure 

4.2 shows the seasonal distributions of the total number of extreme rainfall events for 69 locations 

across Greater Sydney for the historical period (bars in light colour), the near-term future period (bars 

in medium colour) and the long-term future period (bars in dark colour) for R1 (blue), R2 (red) and 

R3 (purple) simulations. 

For the historical period, the seasonal distribution of rainfall extremes was characterised for short 

rainfall durations by maxima in summer and minima in winter, whereas for long durations, the 

occurrence varied for each model, with the peak mostly happening in summer (except for R2) and 

the minima in spring. 

When both simulated future periods were compared with the historical period, it was found that: 

 R1 exhibited a clear seasonality with an increase in extreme rainfall events during summer 

months and a decrease during autumn and winter months for all durations, with this increase 

being more evident for the long-term future period. 

 R2 showed seasonality in the occurrence of extreme rainfall events, with events taking place 

mainly during the summer and falling off in the winter. For the near-term period, the 

occurrence of rainfall extremes was greater than for the late future period for the autumn 

months, but less extreme during winter. 

 R3 indicated a more extreme near future period with main increase during summer and spring 

and decrease during winter months. For both future simulated periods, the main occurrence of 

extreme events was found during summer, whereas the minima in winter. 

The results from R1, R2 and R3 recorded an overall increase in the number of extreme occurrences 

during summer months and a decrease for winter months when compared to the historical 

simulations, although for the near future in R2 and R3 these changes seemed to be more extreme 

than for the long-term future. 

Results for future changes in the seasonality of sub-daily rainfall extremes over Greater Sydney 

indicated that in a future climate, most extreme rainfall events can be expected in the summer with 

fewer occurring in the winter months. Therefore, it was concluded that the seasonality of sub-daily 

rainfall extremes over Greater Sydney will remain influenced by summer convective rainfall, with 

the maxima occurrence was particularly observed during warm and wet (summer) months.  
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Figure 4.2  Seasonality of sub-daily rainfall extremes estimated from R1 (blue bars), 

R2 (red bars) and R3 (purple bars) simulations at 69 selected grid points 

across Greater Sydney during the historical (1990-2009), the near-term 

prediction (2020-2039) and long-term projection (2060-2079) periods. 
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4.4.3  Is the relationship between sub-daily rainfall extremes and 

atmospheric temperature valid for future projections in RCMs?  

The scaling relationship between the 99th percentile of sub-daily rainfall and mean temperature was 

investigated for the near-future prediction and the long-term future periods in simulations from R1, 

R2, and R3 and then compared with the historical simulations considering only 69 grid points across 

Greater Sydney region. Figure 4.3 illustrates the scaling of sub-daily rainfall extremes with 

temperature for R1 (blue), R2 (red) and R3 (purple) simulations for the historical period (lines in 

light colour), the near-term future period (lines in medium colour), and the long-term future period 

(lines in dark colour). 

When the scaling relationship between sub-daily rainfall extremes and temperature in the RCMs for 

future projections was compared with the historical simulations, it was found that: 

 R1 showed scaling rates that approximated the C-C rate, particularly for 1-hour and 3-hour 

rainfall extremes and for temperature ranges from 2°C to 23°C. For longer durations, rainfall 

extremes also increased close to the C-C rate for temperatures up to 21°C. 

 R2 also followed the C-C rate for temperatures up to 23°C for short durations and for long 

durations for temperatures up to 20°C. 

 R3 also showed a temperature scaling rate close to the C-C rate for temperatures up to 24°C 

for short rainfall durations and up to 22°C for long rainfall durations. 

The scaling rates in future projections of the RCMs approximate the C-C scaling rate, particularly 

for 1-hour and 3-hour durations and for temperatures up to 23°C. For 6-hour and 12-hour durations, 

the scaling relationship of rainfall extremes with temperature showed scaling rates different to the C-

C rate for temperatures up 21°C. Indeed, for temperatures higher than these ranges the scaling 

relationship decreases and the scaling rate becomes negative. 
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Figure 4.3  Increase of the 99th percentiles of rainfall intensity at sub-daily durations 

with surface temperature for R1 (blue), R2 (red) and R3 (purple) 

simulations. An exponential regression is fitted to 69 grid cells for the: 

(i) historical period (light colour lines), (ii) near-term future projection 

(medium colour lines) and (iii) long-term future projections (dark colour 

lines). Dashed lines correspond to the C-C rate (~7%/°C). 
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The relationship between the 99.9th percentile of sub-daily rainfall and surface temperature was also 

investigated for the near-future prediction and the long-term future periods in R1, R2, and R3. Figure 

4.4 illustrates the temperature scaling estimated at 69 grid-point locations across Greater Sydney in 

R1, R2 and R3 simulations during the historical period, the near-term future period and the long-

term future period. 

Comparing the temperature scaling in each RCM and simulated period, it was found that: 

 R1 closely followed the C-C rate for temperatures up to 23°C for most sub-daily durations and 

for both the near-future and long-term future periods. 

 R2 approximated the C-C rate for temperatures up to 24°C for most sub-daily durations and 

for both the near-future and the long-term future projections. 

 R3 also followed the C-C rate for temperatures 24°C for most sub-daily durations and for both 

future projections. 

The scaling temperature ranges obtained from the 99.9th percentile of hourly rainfall in both the near-

term future and long-term future projections approximated the C-C rate. These temperature scaling 

rates were found for temperature ranges higher than the historical period. 

The results for future projections for both the 99th and 99.9th percentiles of rainfall indicated that the 

intensification of hourly rainfall extremes with temperature approximately followed the C-C rate for 

temperatures no higher than 24°C. Moreover, the temperature scaling for future projections was 

found for temperature ranges higher than the historical simulated period for most durations. 

However, for a given temperature, the intensity of rainfall extremes (either the 99th or 99.9th 

percentiles of rainfall) in the historical period was higher for the future period in simulations, 

especially for long duration. 

Simulations of three RCMs for the historical period found that the temperature scaling was like the 

C-C rate only for hourly durations, while for future projections, the temperature scaling tended to 

approximate to the C-C rate, especially for the long-term future. 
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Figure 4.4 Increase of the 99th percentiles of rainfall intensity at sub-daily durations 

with surface temperature for R1 (blue), R2 (red) and R3 (purple) 

simulations. An exponential regression is fitted to 69 grid cells for the: 

(i) historical period (light colour lines), (ii) near-term future projection 

(medium colour lines) and (iii) long-term future projections (dark colour 

lines). Dashed lines correspond to the C-C rate (~7%/°C). 
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The mean of the temperature scaling rate (mtsr) at 69 point locations across Greater Sydney was also 

estimated for the historical period, the near-term future and the long term future periods. The mtsr 

was also compared between the 99th and the 99.9th percentiles of hourly rainfall intensity. 

Table 4.2 outlines the mtsr estimated for the 99th percentile and the 99.9th percentile of houly rainfall 

intensity for the three simulated period and for the three RCMs. The mtsr is presented in terms of 

percentage per 1°C of temperature in order to be comparable with the C-C rate (7%/°C). 

The results indicate that the mtsr estimated for the 99.9th percentile of rainfall intensity were overall 

higher than those for the 99th percentile, especially for the long-term future period in the simulations 

from all three RCMs. The magnitude of the mtsr varied from the lowest 4.35%/°C rate (found in R3) 

to the highest 6.28 %/°C rate (found in R1), with mtsr values slightly below the C-C rate over Greater 

Sydney. 

Table 4.2 The mtsr for the 99th and 99.9th percentile of hourly rainfall for the three simulated periods and 

for the three RCMs across Greater Sydney. 

RCM Period TS from the 99th 
percentile 
(%/°C) 

TS from the 99.9th 
percentile 
(%/°C) 

Comparison between 
the 99.9th and the 99th 
percentile  

R1 1990-2009 4.58 4.62 higher 

2020-2039 6.10 6.28 higher 

2060-2079 5.73 6.28 higher 

R2 1990-2009 4.76 4.84 higher 

2020-2039 5.82 5.25 lower 

2060-2079 6.18 5.98 lower 

R3 1990-2009 4.35 5.46 higher 

2020-2039 5.47 5.32 lower 

2060-2079 5.79 5.88 higher 

The magnitude of the mtsr found for the simulated periods agreed with the temperature scaling rate 

close to the C-C rate and with no evidence for super C-C rates over the region, as also found in the 

previous chapter in observations. 

The findings presented in Figures 4.3 and 4.4 and Table 4.2 suggested that hourly rainfall extremes 

under the A2 high emission scenario might intensify into the future across Greater Sydney. 
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4.4.4  Is the magnitude of annual maxima of sub-daily rainfall events 

increasing? 

The mean of the annual maxima of rainfall for 1-hour, 3-hour, 6-hour and 12-hour durations was 

estimated for the historical (1990-2009), the near-term (2020-2039) and the long-term (2060-2079) 

periods in the three model simulations. Then, the ratio of the annual maxima was estimated using 

Eq. 4.1 for the entire Greater Sydney domain. 

Figure 4.5 illustrates the ratio of the annual maxima between the mean of the annual maxima at sub-

daily durations for the near-term future period and for the historical period for R1, R2 and R3. In the 

figure, areas in white indicate no significant changes in the ratio of the means, with either 

underestimation or overestimation no greater than 10%, whereas blue areas indicate there was an 

increase and red areas a decrease, respectively. 

When the ratio of the annual maxima was analysed for the near-term future, it was found that: 

 The ratio in R1 showed an increase over the north continental area by up to 60% and a 

decrease in the north and south parts in the ocean by up to 30%. For long durations and 

especially over the central coast there were no significant changes. 

 The ratio in R2 mostly decreased by up to 50% over the south coast and ocean areas and 

increased by 60% over inland areas, particularly for longer durations. 

 R3 presented the greatest changes in the ratio along the coastline with a decrease up to 60% 

and a little increase of up to 50% over the north inland. 

The results indicate that the main changes in the ratio of the annual maxima for the near-term future 

showed an overall increase in most north inland areas (blue areas), whereas there is an decrease over 

the south and central coast areas (red areas). In fact, the main increase in the intensity of the annual 

maxima over inland areas was found in R1 particularly for short durations, while the main reduction 

over coastal and sea areas was noticeable in R2 particularly for all durations. 
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Figure 4.5  Ratio between the mean of the annual maxima at sub-daily durations for 

the near-term future (2020-2039) period and for the historical period for 

R1, R2 and R3 simulations over Greater Sydney. Ratios in white colour 

indicate no significant changes (no greater than 10% of the historical 

values), ratios in blue colour indicate increases, while ratios in red 

colour indicate decreases.  
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Figure 4.6 shows the ratio of the annual maxima for the long-term future period which was estimated 

in the same way as the ratio for the near-term future in R1, R2 and R3 simulations for the entire 

Greater Sydney domain. 

When the ratio of the annual maxima was analysed for the long-term future, it was found that: 

 The ratio in R1 increased by up to 60% over inland areas, particularly at hourly duration, and 

decreased by up to 30% along the coastline for 12-hour duration. 

 The ratio in R2 increased by up to 50% over inland areas and slightly decreased over the sea 

up to 20%. 

 R3 presented the greatest changes in the ratio along the coastline, with decreases up to 50% 

and increases up to 40% over inland, particularly in the north. 

The overall results in the ratio of the annual maxima showed an increase in most north inland areas 

(blue areas) and a decrease over coast areas (red areas). R1 and R2 projected mainly increases of 

the ratio while R3 indicated the greatest decreases. 

Findings from the R1, R2 and R3 simulations from both future periods (Figure 4.5 and Figure 4.6) 

projected an increase in the mean annual maxima in north inland areas and also a reduction in the 

intensity of the annual maxima along the coastline and ocean parts which became more evident for 

longer durations. However, the reduction is more evident for the near-term period in comparison 

with the long-term period in simulations. 

In addition, the ratio of the annual maxima for the 1 in 10-year rainfall event was estimated and the 

results are showed on Supplementary Figure 1 and Supplementary Figure 2 in the Appendix. The 

ratios of the annual maxima for the near-term and long-term future indicated similar results that for 

the annual maxima, with reductions along the coastline and ocean parts and increases over north 

inland parts. 

Future projections of the annual maxima from the three RCMs indicated mainly increases over inland 

areas and increases along the coast but these projections should be carefully considered before model 

outputs are used for developing future climate change projections. 
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Figure 4.6 Ratio between the mean of the annual maxima at sub-daily durations for 

the long-term future (2060-2079) period and for the historical period for 

R1, R2 and R3 simulations over Greater Sydney. Ratios in white colour 

indicate no significant changes (no greater than 10% of historical 

values), ratios in blue colour indicate increases, while ratios in red 

colour indicate decreases.  
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4.5  Discussion 

4.5.1  Using the past to model the future  

In the practical field of water resources planning and design, the terms stationarity and non-

stationarity implied different assumptions for predicting changes, particularly when considering 

future climate change (Lins and Cohn, 2011). Features of future events are commonly assumed to 

resemble past conditions (i.e. stationarity), and this assumption underpins most models used in the 

water resources planning and design context. Even in climate impact assessments, stationarity 

assumptions are commonly made; for example, hydrological models calibrated to the historical 

climate are assumed to be appropriate for future rainfall-runoff predictions (e.g. Westra et al., 2014a), 

and statistical downscaling models are often developed under the assumption that historical 

relationships between rainfall and the atmospheric predictors will remain valid in the future. 

However, when the assumption of stationarity proves to be invalid over time, it is necessary to adapt 

to the changes and adjust the models to reflect emerging scenarios. 

The relationship between sub-daily rainfall extremes and mean temperature provides an example of 

circumstances that can be used to identify whether a historical relationship will be valid under future 

projections involving RCMs. Figure 4.7 presents a conceptual understanding of four possible 

scenarios of the scaling relationship for future climate model projections when stationarity cannot be 

assumed: 

Scenario 1.  In the first scenario, stationarity is assumed, providing a baseline scaling 

relationship in which future projections of weather behaviour match the simulation 

based on historical data. 

Scenario 2.  In the second scenario, the scaling relationship in future projections is extended 

along the same curve as in the first scenario, but for higher temperatures. Therefore, 

the historical assumption is partially stable under specific temperature ranges but 

overall is characterised by non-stationarity. 

Scenario 3.  In the third scenario, the scaling relationship in future projections is displaced from 

the historical simulation and demonstrates non-stationarity in terms of the historical 

assumption. 

Scenario 4.  The scaling relationship in future projections is completely changed from the 

historical simulation in the fourth scenario. The scenario is characterised by non-

stationarity.  
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Alternative scenarios in which projections of future rainfall extremes are developed using only 

atmospheric temperature as a predictor were explored for model simulations for the near-term and 

long-term future and then compared to the historical period as shown in Figure 4.8 and Figure 4.9. 

This can provide insight into the validity of the stationarity or non-stationary of the observed 

temperature scaling of short-duration rainfall extremes over Greater Sydney, explored in the 

following section. 

 

Figure 4.7  Conceptual understanding of the intensification of hourly rainfall 

extremes with future warmer temperatures. The historical period (green 

curve) in model simulations is compared to the future period (blue 

curve) in observations to validate whether the relationship is stationary 

(left panel) or non-stationary (right panel) under future climate 

conditions.   
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4.5.2  Projecting future rainfall extremes using atmospheric temperature  

Stationary scaling relationship in simulations. Suppose that the historical period in simulations 

(green curve) approximates the C-C rate for temperatures up to 20°C. If a temperature increase of 

4°C is projected in a future (long-term) warmer climate, the temperature rise will lead to an increase 

in the intensity of rainfall extremes at a rate of ~7% per 1°C along the scaling. For example, rainfall 

intensity for a temperature of 15°C (point a) is projected to increase following a scaling rate close to 

the C-C rate after a 4°C temperature increase (point b). 

The stationarity assumption of the historical scaling relationship is illustrated in Figure 4.7, Scenario 

1. The long-term future period in simulations indicates a scaling relationship (blue curve) that is 

exactly the same as the curve for the historical period and which also approximates the C-C for 

temperatures up to 20°C. In this scenario, the intensity of rainfall extremes associated with a 4°C rise 

in temperature, from point a to point c in the figure, is expected to approximate the C-C rate. 

Non-stationary scaling relationship in simulations. A future increase of 4°C in temperature is 

expected to lead to a rise in rainfall intensity in accordance with the C-C rate (going from point a to 

point b). In contrast, future projections in the simulation (blue curve) are either displaced (Scenarios 

2 or 3) or completely changed (Scenario 4) from the historical period. Although the scaling rate along 

the projected curve follows the C-C rate, the increase in temperature means that the curve will deviate 

from the historical record. For instance, the intensity of rainfall at a given temperature (point a in the 

historical period) will increase from point a to point c following a scaling rate much lower than the 

C-C. 

These hypothetical scenarios for future projections of the scaling relationship were investigated for 

both the 99th (Figure 4.8) and 99.9th (Figure 4.9) percentiles of hourly rainfall intensity in R1 under 

the A2 emission scenario of future climate change. Figure 4.8 shows the scaling relationship between 

the 99th percentile of hourly rainfall intensity with mean temperature for the historical period (light 

blue curve), the near-term future (medium blue curve) and the long-term future (dark blue curve) 

periods in simulations. 
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Figure 4.8  The temperature scaling using the 99th percentiles of hourly rainfall for 

the historical assumption (light blue curve), the near-future period 

(medium blue curve) and the long-term future projection in R1. The 

segments a- c and a- d are used to determine the validity of the 

historical assumption of the segment a-b for future projections. 

Considering a given temperature of 15°C and a future increase of 4°C in temperature, the intensity 

of rainfall in point a to point b will increase by a scaling rate of approximately the C-C. Similar 

scaling rates were also found in future simulations where the intensity of rainfall from point a to 

point c or from point a to point d approximated to the C-C rate. The stationarity assumption of the 

C-C scaling rate was only found within the temperature range 15°C-19°C (similar to Scenario 1), 

while for lower temperatures the scaling relationship was much lower than the C-C rate. Figure 4.9 

showed the historical assumption of the scaling relationship using the 99.9th percentile of hourly 

rainfall (light blue curve). Considering again a temperature of 15°C and a future increase of 4°C in 

temperature, the intensity of rainfall from point a to point b will increase at approximately the C-C 

rate. 

In contrast, a future increase of 4°C in temperature might increase the intensity of rainfall with a 

lower scaling rate than the C-C. For example, the rate of the increase in intensity of rainfall from 

point a to point b differed from the rate projected from point a to point c and from point a to point d. 

Higher and lower temperature ranges projected different scaling rates for each future period. These 

tended to be lower than the scaling rates in the historical period.  
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Figure 4.9  The temperature scaling using the 99.9th percentiles of hourly rainfall 

for the historical assumption (light blue curve), the near-future period 

(medium blue curve) and the long-term future projection in R1. The 

segments a- c and a- d are used to determine the validity of the 

historical assumption of the segment a-b for future projections. 

Despite the fact that future projections in model simulations indicate a scaling relationship close to 

the C-C, the validity of the scaling relationship for future projections (based on the historical period 

simulations) indicates an overall pattern of change that must be considered for future projections. 

4.6  Summary and conclusions 

Simulations for the near-term and long-term future projections in three RCMs were used to identify 

future potential changes in sub-daily rainfall extreme events under the A2 high emission scenario of 

climate change for Greater Sydney. 

A summary of the main findings is presented below: 

 Assuming that the model simulations during the historical period (1990-2009) were a valid 

baseline, near-term projections (2020-2039) show a similar number of grid cells exhibiting 

increases compared to decreases over land for all durations, although with significant 

differences between the models. In contrast, for longer-term projections (2060-2079), more 

grid cells exhibited increases over land for all durations, with some grid cells showing 

increases of 50% or more relative to the historical period. Results also indicate a marked 

decrease of the annual maxima for the coast and over the ocean. This reduction was more 

evident during the near-term future than the long-term future, mainly in R3.  
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 The diurnal cycle of hourly rainfall extremes in both future simulated periods for three RCMs 

indicated no significant changes in the future. The diurnal cycle exhibited an overall late 

afternoon peak that agreed with results found during the simulations of the historical period as 

well as with results from observations discussed in the previous chapter. 

 The main changes for future climate conditions were identified in the seasonality of 

occurrences of sub-daily rainfall extremes, which became more frequent in summer with a 

large increase in the number of extreme events, while winter experienced a dramatic decrease 

that was most evident in the simulations of the near-term future. Given that summer rainfall is 

often dominated by convective activity, the results suggest that sub-daily rainfall extremes 

over Greater Sydney will be increasingly influenced by summer convective rainfall as 

temperatures increase. 

 Future projections in the RCMs suggested that the intensity of rainfall extremes at hourly 

durations would increase in a manner consistent with the C-C rate. For hourly durations, 

temperature scaling rates closely followed the C-C rate with a rate of between 4.3%/°C and 

6.3% /°C, depending on the model, for temperatures up to 25°C. However, the intensity 

estimated for the 99th and the 99.9th percentiles of rainfall was significantly lower than 

observations. 

These results contribute to the evidence for potential future changes of sub-daily rainfall extremes in 

conditions of future climate change in Greater Sydney, considering the A2 emission scenario of 

climate change. 
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Chapter 5. Summary and conclusions 

5.1  Thesis outcomes 

This dissertation presents a strategy to evaluate the capacity of RCMs to reproduce the statistics of 

sub-daily rainfall extremes, as well as some of the relevant physical processes related to such extreme 

events. The strategy was used to evaluate three different physics parameterisations of the 10-km 

resolution WRF model (R1, R2 and R3) over the Greater Sydney region during 1990-2009. 

Moreover, likely future changes in sub-daily rainfall extremes using the three RCMs were 

investigated for two future periods: 2020-2039 and 2060-2079. The main outcomes are summarised 

in turn below: 

5.1.1  Evaluation of the three different configurations of the WRF model  

The specific results included: 

 The observed rainfall extreme events were associated with convective rainfall for short 

durations; whereas for long durations, the rainfall extremes were stratiform. Therefore, sub-

daily rainfall extremes over the region exhibited strong diurnal and seasonal variability. 

 The diurnal cycle of rainfall extremes was overall well reproduced by the three RCMs, 

showing a late evening peak in agreement with the observations, although a 3-hour delay in 

the timing of the maxima was found in R3 (Figure 3.4). 

 The seasonality of rainfall extremes was better captured for 1-hour and 3-hour durations. The 

maximum number of extreme events occurred in the summer months and the minimum in the 

winter months, especially in R1. For long rainfall durations, the seasonality was reproduced 

successfully by the three RCMs for the summer months. However, they failed to reproduce the 

increased occurrence of rainfall extremes during the winter months (Figure 3.5). 

 The thermodynamical concept of the intensification of rainfall extremes with atmospheric 

temperature was consistent with the C-C scaling rate for 1-hour and 3-hour durations and for 

temperatures up to 23°C. Scaling rates like the C-C rate were also reported in the observations 

and in previous studies over the region; however, the intensity of rainfall extremes during the 

scaling in simulations was lower than in the observations (Figure 3.6 and Figure 3.7). 

 Differences in the three RCMs were mostly attributed to the three selected parameterisations in 

the WRF model, particularly for the convective and boundary layer schemes that are very 

important for representing convection processes associated with sub-daily rainfall extremes 

(Table 3.1). 
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The statistics of sub-daily rainfall extremes include the mean of the annual maxima of rainfall and 

the 1 in 10-year rainfall event for 1-hour, 3-hour, 6-hour and 12-hour durations. The specific results 

included: 

 R1 and R3 performed better in terms of modelling the rainfall depth over coastal parts, whereas 

R2 produced better results over the inland from 3- to 6-hour durations when compared with the 

observations at 69 sites across the Greater Sydney region. The observed rainfall depths of sub-

daily rainfall extremes were mainly underestimated for short durations and overestimated for 

longer durations by the three RCMs. R1 performed better over inland areas; whereas R3 

performed better along the coastline (Figure 3.9). 

 Q-Q plots of the annual maxima constructed for six selected sites across the Greater Sydney 

region showed that R3 performed better over low-elevation coastal areas and short durations; 

whereas R2 performed better over inland areas and for most sub-daily durations (Figure 3.10). 

 The trend of the annual maxima was overall overestimated by the RCMs, especially along the 

coast and for long durations (e.g. 6-hour and 12-hour). R1 (for short rainfall durations) and R3 

(for long rainfall durations) partially captured the trend of the annual maxima over inland and 

some coastal areas (Figure 3.12). 

Overall, the results indicate that the three RCMs reasonably reproduced some relevant physical 

processes of sub-daily rainfall extremes over Greater Sydney. Moreover, the intensification of hourly 

rainfall extremes with temperatures up to 23°C was also captured by the RCMs, which provides 

confidence in their ability to project future changes. Therefore, R1, R2 and R3 are recommended for 

investigating future changes in sub-daily rainfall extremes. 
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5.1.2  Future projections  

Future changes in sub-daily rainfall extremes under the A2 high emission scenario of the IPCC were 

investigated for the 2020-2039 and the 2060-2079 periods in R1, R2 and R3 and compared with the 

historical record (1990-2009) from the Greater Sydney region. The specific results included: 

 The influence of future climate change in the diurnal cycle of rainfall extremes showed no 

significant changes in the shape and timing of the peak of extreme rainfall occurrence (Figure 

4.1). 

 Future projections showed significant changes in the seasonality of sub-daily rainfall extremes. 

Sub-daily rainfall extremes are expected to increase in summer and dramatically decrease in 

winter (Figure 4.2). 

 The future intensification of sub-daily rainfall extremes (considering both the 99th and 99.9th 

percentile of rainfall) associated with temperature rise approximated the C-C scaling rate for 

temperatures up to 25°C. However, the historical scaling relationship for hourly durations 

suggested that the historical relationship is not maintained in future projections because the 

intensity of rainfall is expected to change by a different scaling rate due to the rise in 

temperatures. Future projections must therefore consider the non-stationarity of the 

temperature scaling relationship (Figure 4.3 and Figure 4.4). 

 The intensity of sub-daily rainfall extremes is expected to increase in the future over some land 

areas and decrease over coastal and ocean areas (Figures 4.5 and Figure 4.6). 

The results presented in this thesis therefore provide significant information on the nature of likely 

future changes of sub-daily rainfall extremes in the greater Sydney region as a result of anthropogenic 

climate change. 

5.2  Research contributions 

High resolution climate models such as RCMs will remain the primary tool for investigating the 

influence of future global warming on climate, particularly at regional and local scales where most 

extreme events take place. Therefore, it is of great importance to evaluate their reliability in 

realistically simulating sub-daily rainfall extremes. 

Commonly used metrics of model evaluation based on direct measures of the difference observed 

and modelled rainfall extremes provides only limited insight into whether the model simulates the 

correct physical processes; therefore, this research provides a framework for evaluating the skill of 
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RCMs to simulate sub-daily rainfall extremes based on metrics that characterized physical 

underlying processes that lead to the occurrence of such extremes. 

Chapter 2 provided a detailed review of the current knowledge of changes in sub-daily rainfall 

extremes and their potential intensifications due to climate warming, the role of climate model 

(especially RCMs) in representing the relationships between local-scale thermodynamic effects, 

large-scale atmospheric circulation, and sub-daily extreme rainfall intensity. 

Chapter 3 developed a strategy to evaluate the performance of RCMs to capturing sub-daily rainfall 

extremes. This is the first time that a large set of metrics characterising physical processes was 

implemented for evaluate different feature of sub-daily rainfall extremes over Greater Sydney. 

Chapter 4 provided climate modelling evidence for potential changes attributed to emission of 

GHGs under the A2 high emission scenario. This contributed to the knowledge for future likely 

increases in the intensity of rainfall extremes over Greater Sydney, Australia, as projected for the end 

of the 21st century. 

The findings in this study showed an overall reasonable match between model simulations with the 

observations that increase the confidence for the use of the specific RCMs for further applications, 

such as in the development of future projections in sub-daily rainfall extremes over Greater Sydney, 

although bias correction will be required to improve main differences found in the annual maxima at 

different durations. 

5.3  Limitations 

The generalisability of results in this research was subject to the following limitations: 

Limitations in observations. The availability, quality and record length in observations represented 

the primarily limitation to evaluate physical relationships in RCMs. A total of 69 observational 

records were selected based on considering the criteria 90% of completeness and record length from 

1990-2009. Because of the sparseness of observations, it was not possible to develop a gridded sub-

daily rainfall product for direct comparison with WRF. The 10 km resolution of the WRF model is 

relatively small and this facilitates comparison with point observations, however, it is possible that 

there exist biases when comparing extreme rainfall amounts between point and gridded data. Issues 
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related to comparisons between point-based observations and grids are less likely to be important for 

comparisons of the diurnal cycle, seasonal cycle and temperature scaling relationships. 

Limitations in the RCMs. RCMs are highly dependent on the selection of physics parametrizations, 

particularly the convective and boundary layer schemes required for the configurations of the WRF 

model. For instance, this dependency influenced the timing response in the model in reaching the 

maximum intensity of rainfall. For future projections, the results described herein were strongly 

dependent on the lateral boundary provided by the MIROC-GCM and future GHGs forcings supplied 

by the A2 high emission scenario. 

Limitations in very high resolution climate models. The benefit of a very high resolution climate 

model, such as a convective-permitting model is a better representation of spatial and temporal scales 

relevant to sub-daily rainfall extremes. However, most studies using these types of models were 

derived from singular models and/or short simulated periods (less than 10 years), as a consequence 

of the very high computational cost. Therefore, short climate records are not sufficient to understand 

the climate change signal and involved feedbacks that are used in climate model evaluation. 

Limitations in the evaluation metrics. The evaluation of sub-daily rainfall extremes is limited by 

the availability of relevant atmospheric weather variables to better understand the physical processes 

associated to sub-daily rainfall extremes. Most observations are obtained from ground-based systems 

that are not able to provide information about cloud processes and cloud feedbacks, such as 

convective available potential energy (CAPE) and convective cloud cover which are relevant to 

atmospheric instability and convective cloud formation that will ultimately lead to the occurrence of 

rainfall extremes. Nevertheless, it is likely that the ground-based data provides useful proxies most 

of the relevant physical processes relevant to the generation of rainfall extremes. 

5.4  Recommendation in the use of evaluation approach for future studies 

The strategy of climate model evaluation based on the use of physically meaningful metrics can be 

applied to any climate model (GCM, RCM or convective-permitting model) that investigates sub-

daily rainfall extremes, considering the follow recommendations: 

 High-quality observational data with long-continuous records must be available. Observational 

data is primarily needed for establishing the relationships to be included in the evaluation of 
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the climate model in order to provide an adequate representation of the relevant physical 

processes. 

 The spatial and temporal resolution of model outputs must be comparable with the resolution 

in observations. For RCMs, model simulations are considered consistent and comparable with 

observations for point locations when the spatial resolution is no higher than 20 km and 

temporal sub-daily resolution such as hourly outputs. 

 Particularly for future projections, the time-slice of climate model outputs must be long 

enough to suggest that the results are representative of likely changes under future climate. 

 The strategy of evaluation implemented in this research can be extended by considering 

multiple outputs, multiple models and ensembles as well as longer realizations in the climate 

model rather than selecting only one model that performs best. 

5.5  Future research 

It is recommended that further research be undertaken in the following areas: 

 Improve the representation of local storm dynamics (e.g cloud and moisture processes) and 

their interaction with large-scale atmospheric circulation in regional climate models. 

 Differentiate the type of rainfall extremes (e.g. convective and large-scale stratiform rainfall) 

that might cause changes in the rainfall extreme pattern and may also influence the scaling 

relationship between hourly rainfall extremes and surface temperature. Further research needs 

to examine more closely the decline of the temperature scaling of sub-daily rainfall extremes 

for temperatures higher than 25°C and which seems to be associated with the availability of 

the atmospheric moisture content and/or the transport of atmospheric moisture. 

 Investigate the ways in which moisture availability constrains the intensification of rainfall 

extremes in conjunction with higher temperature ranges. Further research is needed to examine 

more closely the decline of the temperature scaling of sub-daily rainfall extremes for 

temperatures higher than 25°C which seems to be associated with the availability of the 

atmospheric moisture content and/or the transport of atmospheric moisture. 

 The selection of future GHGs emission scenarios and/or the generation of new representative 

concentration pathways (RCPs) is required to investigate future change in sub-daily rainfall 

extremes.  
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Appendix 1 – Supplementary figures  

 

Supplementary Figure 1  Ratio between the 1 in 10-year rainfall event at sub-daily 

durations for the near-term future (2020-2039) period and for the 

historical period for R1, R2 and R3 simulations over Greater 

Sydney. 
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Supplementary Figure 2 Ratio between the 1 in 10-year rainfall event at sub-daily 

durations for the near-term future (2060-2079) period and for 

the historical period for R1, R2 and R3 simulations over 

Greater Sydney.   
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Appendix 2 – Supplementary figures  

 

Supplementary Figure 3 Quantile-quantile plots comparing the 1 in 2 year rainfall 

extreme events at 69 locations across the Greater Sydney 

region. Model outputs were compared with the observations 

(No BC) and then bias corrected (BC).  
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Supplementary Figure 4 Quantile-quantile plots comparing the 1 in 10 year rainfall 

extreme events using the fitted GEV at 69 locations across the 

Greater Sydney region. Model outputs were compared with the 

observations (No BC) and then bias corrected (BC).  



 

108 

Appendix 3 – The spatial configuration of atmospheric variables associated with 

the 10 most extreme rainfall events 

Composite maps of weather variables associated with the most extreme precipitation events were 

constructed based on the work by Mishra et al. (2012b). Synoptic composite maps of the MSLP and 

10-metre wind fields were built for the Greater Sydney region, based on the magnitude of the 10 

most extreme rainfall events during 1990-2009 at Sydney Airport (-33.9465, 151.1731) weather 

station. 

In observations, composite maps were made using the NCEP CFSR data sets. The spatial resolution 

in model simulations and CFSR (grid spatial resolution of 0.5° latitude x 0.5° longitude) datasets 

were interpolated using the R software package akima (http://www.r-project.org) to ensure 

consistency. 

Synoptic composites of MSLP and wind (u and v components) fields associated with these extreme 

events were constructed in the R software by calculating the arithmetic mean of the variables for 

each grid point, as follows: 

n

v

V

n

t

t

ext


 1

 
(Eq. S1) 

where extV is the mean magnitude of the variable (i.e. MSLP or wind speed) for each grid-

point in both CSFR and RCM data from t=1 to n=10 (number of the most extreme events). 

Finally, composite maps that associated the 10 most extreme rainfall events were constructed and 

compared between the reanalysis data (considered as observations) and model outputs. 

Is the composite map of pressure and wind fields associated with the most extreme rainfall 

events in the observations and model simulations similar? 

Daily maximum rainfall was used to identify the 10 most extreme rainfall events for the Sydney 

Airport weather location for both observations and model simulations during 1990-2009. 

The dates and rainfall depths corresponding to the 10 most extreme rainfall events for both the OBS 

and RCMS are presented in the Supplementary Table 1. Most extreme events in the OBS occurred 

during summer months (DJFM) but less often in the RCM simulations. The lowest rainfall depth 

was registered in the observations (76.4 mm/day); whereas the highest in R3 (194.16 mm/day). The 

magnitude of daily maxima was mainly overestimated by R3 and overestimated by R1.  
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Supplementary Table 1  Rainfall depths and dates associated with the 10 most rainfall extreme for 

Sydney Airport location during the period 1990-2009. 

No. 

events 

the OBS R1 R2 R3 

date 
rainfall 

depth 
date 

rainfall 

depth 
date 

rainfall 

depth 
date 

rainfall 

depth 

1 1990-02-02 154 1991-01-17 102.88 1991-06-07 84 1996-02-16 102.17 

2 1990-02-04 125.4 1995-06-05 94.78 1998-06-30 150 1996-05-19 146.13 

3 1991-06-10 149.2 1996-02-15 102.57 1999-02-28 104.80 1997-05-22 112.66 

4 1992-02-09 188.9 1996-08-31 99.83 2000-11-01 94.65 1998-07-25 169.86 

5 1995-09-25 153.6 1998-01-28 106.45 2005-06-28 123.72 2000-11-04 122.52 

6 1998-04-10 88.6 1999-04-02 98.17 2005-06-29 153.33 2001-02-05 114.62 

7 2001-01-31 116.6 2000-02-22 111.25 2007-11-09 95.68 2001-02-06 157.94 

8 2002-02-04 140 2005-04-15 105.92 2008-06-04 108.85 2005-06-29 147 

9 2003-05-13 96.4 2007-06-16 93.68 2009-02-15 147.70 2008-05-27 130.24 

10 2008-02-04 76.4 2007-11-30 121.91 2009-08-12 82.41 2009-02-03 194.16 

The 10 selected days associated with the occurrence of the daily maxima of rainfall at the Sydney 

Airport weather location were used to construct a synoptic composite of the MSLP and 10-metre 

wind fields over the domain of Greater Sydney. 

Supplementary Figure 5 illustrates the mean magnitude of MSLP (in mb) and 10-metre wind speed 

(in m/s), along with the direction vector associated with the 10 most extreme rainfall events at Sydney 

Airport for (a) the CFSR reanalysis data, (b) R1, (c) R2 and (d) R3 model simulations over Greater 

Sydney. 

Results from reanalysis datasets indicated a mean sea-level pressure pattern with a relatively low 

pressure (1000 mb) centre over the northeast part, along with a predominant southwest wind direction 

over the upper and central coast of Greater Sydney. 

When comparing with composites from R1, R2 and R3, it was found: 

 Composite maps from R1, R2 and R3 were consistent with the low pressure patterns found in 

observations, although the three RCMs tend to underestimate the magnitude of the MSLP 

magnitude, in particular R3. 

 The magnitude and direction of winds was partially captured by the RCMs. Along the 

coastline, R2 and R3 were able to reproduce the direction of winds but the magnitude was 

underestimated. 

 The magnitude of the MSLP was mainly underestimated by the three RCMs. However, the 

presence of a relative lower MSLP system agreed with a previous study by Evans et al. (2012) 

which indicates that extremes events are associated with east coast low pressure systems. 
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Results also suggest that RCMs outputs partially simulated the composites of wind vectors, 

especially R1 and R2, along the northern and central part of the coast, but they underestimated the 

magnitude of the MSLP. In contrast, the main difference in the magnitude and direction of wind 

fields may be attributed to the spatial interpolation used. Both reanalysis and RCM simulations had 

different grid resolutions that may have an influence in capturing the predominant direction and 

magnitude of the wind over the region. 

 

 

Supplementary Figure 5 MSLP and 10-m wind composite maps associated with the 10 

most extreme rainfall events were constructed from (a) CFSR 

reanalysis data, (b) R1, (c) R2 and (d) R3 simulations. 
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Evaluating regional climate models simulations of sub-daily rainfall extremes 

Virginia Edith Cortés Hernández, Feifei Zheng, Jason Evans,  

Martin Lambert, Ashish Sharma and Seth Westra 

Abstract: Sub-daily rainfall extremes are of significant societal interest, with implications for 
flash flood risk and the design of urban stormwater systems. It is increasingly recognised that 
extreme subdaily rainfall will intensify as a result of global temperature increases, with 
regional climate models (RCMs) representing one of the principal lines of evidence on the 
magnitude and spatiotemporal characteristics of these changes. To evaluate the ability of 
RCMs to simulate subdaily extremes, it is common to compare the simulated statistical 
characteristics of the extreme rainfall events with those from observational records. While 
such analyses are important, they provide insufficient insight into whether the RCM 
reproduces the correct underlying physical processes; in other words, whether the model 
“gets the right answers for the right reasons”. This paper develops a range of metrics to assess 
the performance of RCMs in capturing the physical mechanisms that produce the rainfall 
extremes. These metrics include the diurnal and seasonal cycles, dependency between rainfall 
intensity and temperature, temporal scaling, and the spatial structure. We evaluate a high 
resolution RCM – the Weather Research Forecasting (WRF) model – over the Greater Sydney 
region, using three alternative parametrization schemes. The model shows consistency with 
the observations for most of the proposed metrics. Where differences exist, these are 
dependent on both the rainfall duration and model parameterization strategy. The use of 
physically meaningful performance metrics provide a significantly improved understanding of 
the model physics, which not only enhances the confidence in model simulations, but also 
paves the way for further model improvement. 

Keywords: Regional climate models, climate model evaluation, sub-daily rainfall extremes, 

Weather Research Forecasting (WRF) model, Greater Sydney region. 
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1. Introduction 

Extreme rainfall events are of significant societal concern due to their direct relationship with 
floods that can cause catastrophic impact on the environment and society (Hallegatte et al. 
2013). Short-duration (sub-daily) extreme rainfall events can be particularly hazardous, as 
they can lead to flash floods that occur with little or no warning (Ahern et al. 2005). 
Understanding potential future changes to sub-daily rainfall in a future warmer climate is 
therefore critical to support urban planning policies and the design of flood protection 
infrastructure (IPCC 2013).  

Global climate models (GCMs) are limited in their capacity to simulate the physical processes 
that cause short-duration extreme rainfall events. These models are run at coarse spatial 
scales (with typical grid sizes of 100km-300km) and have been used primarily to understand 
average rainfall patterns with long timescales (e.g. monthly or yearly) (IPCC 2013). At sub-
daily timescales and when focusing on extremes, the model resolution and the necessity of 
using convection parameterisations to resolve sub-grid processes suggest that quantitative 
sub-daily rainfall projections from GCMs are unlikely to be reliable in the foreseeable future 
(Westra et al. 2014). 

High resolution regional climate models (RCMs) therefore have been developed as the main 
tool for simulating future changes to sub-daily extreme rainfall. For instance, Beniston et al. 
(2007) used a RCM to simulate extreme rainfall events for Europe in future (2071-2100). 
Buonomo et al. (2007) investigated the robustness of changes in extreme rainfall over Europe 
from two high resolution RCMs. Furthermore, van Pelt et al. (2012) applied five bias-corrected 
RCM models to estimate the future changes of extreme rainfall in the Rhine basin. More 
recently, Kendon et al. (2014) projected hourly rainfall extremes for a region in the UK using a 
very high resolution RCM with 1.5 km grid spacing. Although each study focuses on sub-daily 
rainfall extremes, they differ substantially in terms of the models (and parameterisations) that 
were used, and their horizontal resolution.  

Given the increasing reliance on RCMs to simulate future sub-daily extreme rainfall, it is 
natural to ask: How reliable are the extreme rainfall projections from these models? And 
which models and parameterisations most realistically reproduce the physical processes that 
cause extreme rainfall? In most cases, RCM performance is evaluated by comparing historical 
extreme rainfall statistics for various durations with those simulated by the model under 
historical greenhouse gas forcings (e.g. Kendon et al. 2014). While such analyses are 
important, they provide insufficient insight into whether the RCM reproduces the correct 
underlying physical processes that lead to the extreme rainfall events. In other words, 
focusing only on the extreme rainfall statistics themselves provides insufficient information to 
know whether the model “gets the right answers for the right reasons” (Kirchner 2006). Yet 
relatively little research has been undertaken to evaluate the RCMs’ ability in reproducing the 
physical mechanisms associated with sub-daily rainfall extremes (Westra et al. 2014). 

Gaining deep insight into an RCM’s capacity to represent physical processes with regard to 
extreme rainfall can not only improve our confidence in their projections, but also can provide 
a pathway for further model improvement (Evans and Westra 2012). However, in the context 
of rainfall extremes, applications of this approach for model evaluation have been limited. For 
example, Lenderink and van Meijgaard (2008) applied a 25 km RCM to De Bilt, the 
Netherlands, for investigating the physical relationship between hourly rainfall extremes and 
temperature. Subsequently, Evans and Westra (2012) investigated a RCM’s utility in 
simulating 3-hour rainfall extremes using a measure of diurnal cycle, and Tripathi and 
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Dominguez (2013) evaluated the ability of a RCM in reproducing the spatial structure of 
observed 3-hour and 24-hour rainfall extremes in the Southwestern United States. 

The aforementioned studies have made significant contributions in building knowledge for 
assessing RCMs’ ability in terms of capturing the physical mechanisms associated with short-
duration rainfall extremes. However, these previous studies focus on single measures of 
model performance, rather than provide a suite of diagnostic tools to assess whether the 
dominant physical processes leading to extreme rainfall are adequately captured. The present 
study develops a suite of physically meaningful metrics to assess the RCM’s capacity in 
modelling sub-daily rainfall extremes. The metrics include the diurnal and seasonal cycles, 
dependency between extreme rainfall intensity and temperature, temporal scaling, and the 
spatial structure of extreme rainfall events. 

The proposed metrics are used to evaluate the performance of a high resolution RCM- 
Weather Research Forecasting (WRF) with three different parametrization schemes in 
simulating sub-daily rainfall extremes for the Greater Sydney region from 1990 to 2009. The 
simulated rainfall is compared to observed rainfall from 69 sub-daily rainfall stations are from 
this region to enable a comparison with the simulated rainfall events over the common period 
(for details see Section 3). The timescales considered in the present study include 1-hour, 3-
hour, 6-hour and 12-hour.  

The remainder of the paper is presented as follows. Section 2 describes each proposed 
metric, and discusses how each metric can provide insight into the RCM’s capacity to simulate 
specific processes. Section 3 presents the WRF model and the observational rainfall data from 
the Greater Sydney region, and Section 4 highlights the importance of understanding the 
RCM’s ability to reproduce the physical mechanisms associated with rainfall extremes. The 
results of the proposed metrics applied to the Greater Sydney region as well as the relevant 
discussions are outlined in Section 5. Finally, Section 6 gives the conclusions of this study.  

2. RCM evaluation metrics  

The correct simulation of the statistical properties of extreme rainfall appears to be neither a 
necessary nor sufficient element for inclusion of the projections into climate impact studies. 
The lack of necessity is demonstrated by the widespread use of post-processing methods 
(commonly referred to as bias correction methods), in order to statistically correct RCM 
outputs to more closely match those of the observed data (Maraun 2013). However, even if 
the statistical properties of extreme rainfall are correctly represented, it does not necessarily 
mean that the physical processes that produced the extreme rainfall events are correct, 
which may be problematic when the model is used to predict future rainfall.  

This paper describes a set of metrics that should be considered in addition to direct measures 
of the statistical properties of extreme rainfall, as a precursor to using a model to produce 
future projections of extreme rainfall. To this end, five metrics have been formulated that: (i) 
indicate whether the key rainfall-generating processes – including large-scale circulation and 
local-scale thermodynamic effects – are correctly simulated; and (ii) correspond to easily 
measureable quantities for which observational data is readily available. The metrics include 
the diurnal cycle, seasonal cycle, relationship between rainfall intensity and temperature, 
temporal scaling, and spatial distribution of the rainfall extremes (Table 1).  
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Table 1 Summary of the metrics 

Metrics Measure aspects of the climate models 

Diurnal cycle Can the model simulate rainfall extremes at the correct time of day? 

Seasonal cycle 
Whether the model can simulate rainfall extremes in the correct 
season? 

Temperature scaling rate 
Can the model capture the observed dependence between rainfall 
intensity and temperature? 

Temporal scaling 
Can the model reproduce the correct scaling relationships between 
different levels of aggregation? 

Spatial structure  Are the model-simulated rainfall fields realistic? 

2.1  Diurnal cycle  

The diurnal cycle has previously been used to evaluate the performance of climate models in 
correctly representing the local storm dynamics that trigger rainfall extremes. For instance, 
Evans and Westra (2012) examined the diurnal cycle of 3-hour rainfall extremes simulated 
from a RCM over southeast Australia, and concluded that the amplitude of the diurnal cycle 
from the observations were reasonably reproduced by the RCM. Langhans et al. (2013) 
investigated the diurnal cycle of 3-hour extreme rainfall over the European Alps using a 
convection-parameterizing RCM and two cloud-resolving RCMs. They reported that the cloud-
resolving RCMs showed good agreement with the observations in terms of diurnal evolution, 
although the convection-parameterizing RCM produced peaks of rainfall extremes that were 
too early, due to a too-early activation of deep convection.  

The occurrences of extreme rainfall at time t=01:00, 02:00,…..,24:00 of day, denoted as 

)(tOD , can be expressed as 





n

i

i tETItOD
1

)),(()(  (1) 

where )( iET  is the time of occurrence of the ith (i=1, 2,…,n) extreme rainfall event ( iE ), and 

n is the total number of extreme events of a particular timescale (e.g., hourly). I is the 
indicator function: 
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 
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The diurnal cycle is defined as the variation in )(tOD  with time, and is useful as a diagnostic 

measure as it can indicate the triggering mechanisms of the short-duration rainfall extremes 
(e.g., hourly) such as wind convergence, topographic lifting, land-sea breeze circulation and 
atmospheric pressure variations at the local scale (Dai and Trenberth 2004). For example, in 
the tropics the timing of maximum rainfall intensity is typically in the afternoon caused by the 
destabilization of the boundary layer. In contrast, the rainfall maxima may occur between 
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midnight and early morning at some land areas as a result of local effects such as complex 
terrain and sea-breeze circulations (Nesbitt and Zipser 2003).  

Given the value of the diurnal cycle in revealing the underlying physical process, we adopted 
it as a metric to assess the RCM’s performance in simulating hourly rainfall extremes. This 
metric directly evaluates whether the model can simulate hourly rainfall extremes at the 
correct time of day, and hence provide insight into model physics related with the convective 
process. While the diurnal cycle has been implemented in previous work (Evans and Westra 
2012; Langhans et al. 2013), it was used to analyze the rainfall extremes with relatively longer 
durations (3-hour) compared to 1-hour timescale considered in the present study. 

2.2 Seasonal cycle  

The occurrences of extreme rainfall at different seasons (denoted as )(sOS ) is defined 

analogously to the diurnal cycle as: 
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where } winterautumn, summer, spring,{s . The indicator function I is defined as the same as 

Equation (2), with )( iET  and t respectively replaced by )( iES  and s.  

The seasonal cycle is a valuable metric for assessing the performance of climate models in 
characterizing the dominant synoptic meteorology of the rainfall extremes. For example, in 
the Sydney case study region, the convective rainfall extremes are more likely to occur in hot 
seasons (e.g., summer) with relatively short durations, whereas the stratiform extremes take 
place during seasons that are related with large-scale circulation patterns (e.g., frontal 
systems), typically with longer durations (Zheng et al. 2015). Therefore the shape of the 
seasonal cycle across different durations can indicate the roles of different climate drivers in 
producing rainfall extremes.  

The use of the seasonal cycle to evaluate the performance of RCMs is not new. For example, 
Maraun et al. (2011) found that RCMs can reproduce the overall seasonal cycle of daily 
rainfall extremes, but cannot fully capture the amplitude. Subsequently, Schindler et al. 
(2012) evaluated the performance of 14 RCMs in simulating the annual cycle of daily extreme 
rainfall in the UK, and stated that most RCMs underestimated the observed peaks in summer. 
More recently, Zheng et al. (2015) showed that at the hourly duration in the Greater Sydney 
region, observed extreme rainfall was largely summer-dominated, whereas for longer 
durations the distribution was more evenly spread throughout the year. This latter result 
shows an important feature of the seasonal cycle: namely, that the seasonal cycle of extreme 
rainfall can strongly depend on the duration of the extreme rainfall event.  

The seasonal cycle is used as a metric to evaluate the model’s performance in correctly 
simulating rainfall extremes that are caused by different climate forcings. In contrast to its 
implementations using daily rainfall extremes in many previous studies, this paper applied 
this metric to sub-daily rainfall extremes ranging from 1-hour to 12-hour durations.  

2.3 Relationship between rainfall intensity and temperature  

A long-standing hypothesis regarding future changes to extreme rainfall is that extreme 
rainfall will scale in proportion to the moisture-holding capacity of the atmosphere, which 
based on the Clausius-Clapeyron relationship increases at a rate of approximately 7% per 
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degree (Trenberth et al. 2003). This hypothesis has become known as the ‘Clausius-Clapeyron 
(CC) scaling hypothesis’, and recently empirical and modelling studies have been conducted to 
assess whether and under which conditions the hypothesis holds (see Westra et al, 2014, for 
a detailed review). 

Whereas at the global scale and for daily rainfall it has been shown that annual maximum 
daily rainfall has been increasing at a rate of between 5.9% and 7.7% per degree globally 
averaged atmospheric temperature (but with significant regional variations) (Westra et al, 
2013), there is significant evidence that much higher scaling rates are possible for sub-daily 
rainfall. Lenderink and van Meijgaard (2008) examined a long time series of hourly rainfall in 
The Netherlands, and found rates double the CC scaling rate (14% per degree) for 
temperatures above 12°C. This has variously been attributed to latent heat release within the 
storm system, and a change from largely stratiform rainfall at lower temperatures to more 
convective rainfall at higher temperatures (e.g. see Berg et al, 2013). In contrast to these 
results, Hardwick-Jones et al (2010) found negative scaling rates at higher temperatures, 
particularly once temperatures exceeded 24°C. This latter result was attributed to potential 
moisture limitations at higher temperatures, although the explanations for this result as well 
as the future implications under a warming climate have yet to be explored in detail.  

The complex set of physical mechanisms that collectively determine the relationship between 
extreme rainfall and atmospheric temperature make the temperature scaling relationship 
ideally suited as a diagnostic metric to assess the performance of climate models. The metric 
was formulated based on the method described in Lenderink and van Meijgaard (2008), in 
which:  

i) the observed or simulated rainfall events (greater than 0.1 mm) with a particular duration (of 
say hourly) are paired with their corresponding mean daily temperature;  

ii) the rainfall-temperature pairs are ranked based on the ascending order of the temperature; 

iii) the sorted pairs are split into 12 bins such that each bin possesses the same number of events; 
and  

iv) the 99th percentile of the rainfall events and the median temperature of each bin formed a 
dataset to enable a linear regression.  

The slope of linear regression represents the CC scaling rate between the rainfall depth and 
temperature, and forms the basis of the comparison between modelling simulations and 
observations. 

2.4 Temporal scaling 

Previous studies have demonstrated rainfall patterns are often scale invariant, where the 
fluctuations in the field of interest at small scale and large scales are can be represented by a 
single scaling parameter (Lovejoy and Schertzer 1985). Following this physical behaviour, the 
presence of the invariant scale across different timescales in the rainfall field is expected due 
to the existence of the scale limits in their atmospheric forcings (Veneziano and Lepore 2012). 
There has been significant research on the temporal scaling relationships based on historical 
rainfall, focusing either on the scaling model developments or validation of their existence 
using observed rainfall data (Paschalis et al. 2013; Mandapaka and Qin 2014; Mascaro et al. 
2014). In contrast, relatively little attention has been given to evaluate the climate models 
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using the temporal scaling relationships of the simulated rainfall extremes across different 
time resolutions. 

The characterization of the statistical properties of extreme rainfall across a wide range of 
timescales (e.g., from daily to hourly) is an important part of the overall assessment of model 
performance. Such information is useful for developing and calibrating statistical downscaling 
tools that reproduce finer scales of rainfall properties from coarse predictions of RCMs. In the 
present study, the temporal scaling is proposed as a metric to assess whether the climate 
models can reproduce the observed scaling relationship between different levels of 
aggregations. More specifically, depths of observed and simulated rainfall extremes across 
different durations were converted to the percentages of their corresponding 24-hour rainfall 
amounts for each site, leading to a temporal scaling relationship that can be used to indicate 
model performance. 

2.5 Spatial  structure 

The spatial properties of the observed rainfall extremes have been previously considered as a 
part of RCM evaluation studies. For example, Tripathi and Dominguez (2013) found that a 10 
km resolution RCM was able to capture the main spatial structure of the 3-hour rainfall 
extremes in the southwestern US, whereas Wang and Kotamarthi (2014) applied a RCM to 
North America and observed that the model was capable of capturing the main features of 
the spatial patterns of the monthly rainfall. 

The statistical properties of short-duration rainfall extremes are very different from those of 
rainfall averages or rainfall aggregated over long intervals (e.g. monthly or annual rainfall), 
and therefore a method is required that is specifically targeted towards modelling short-
duration extreme events. Here, we use an approach drawn from spatial extreme value 
statistics (e.g. Schlather and Tawn 2003), by measuring how the intensity of extreme rainfall 
decays with distance. 

The approach commences by considering extremal dependence between two sites via: 
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where ( )
i j

s s   is the pairwise extremal coefficient between two sites is  and js  

representing the dependence strength between these two sites (Schlather and Tawn 2003). 

The values of )(  are bounded by (1,2). The case where )( = 1 corresponds to complete 

dependence, indicating that the sites is  and js  always simultaneously produce rainfall 

extremes; conversely, )( = 2 means complete independence.  

The depth of the annual maximum rainfall at each site is described by the random variable

)( isZ . Given that there are significant differences in the rainfall characteristics between 

different spatial locations as a result of orographic effects, coastal influences and so on (see 
Section 4), it is necessary to transform the rainfall at each location to a standard generalised 
extreme value distribution prior to conducting the dependence analysis. This is followed by 

the calculation of the joint cumulative probability of the combined rainfall depth at sites is  
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and js , as shown on the left hand size of Equation (4). Further details of the method are given 

in Schlather and Tawn (2003). 

Finally, to obtain the overall dependence structure across the study domain, the values of 

)(  are first estimated separately for each pair of locations is  and js , totalling 2346 

separate pairwise combinations amongst the 69 stations (or grid cells). These dependence 
values are then plotted against the spatial distance between each station pair, to obtain a 
measure of the overall spatial dependence within the study region. This plot forms the 
diagnostic plot to be used for RCM evaluation. 

The approach is applied separately across multiple durations, since the spatial dependence 
for short-duration extremes is expected to be weaker than for longer timescales. This is 
because the short-duration extreme rainfall is most commonly caused by local-scale 
convective activity (Berg et al. 2013), while longer rainfall extremes (say daily) are associated 
with larger-scale meteorological conditions (Delworth and Zeng 2014). The complexities of 
the spatial structure as well as their underlying physical mechanisms provide another valuable 
metric to evaluate the performance of the climate models.  

3. The regional climate model and the observed data  

The Advanced Weather Research and Forecasting (WRF) model version 3.3 was used to 
demonstrate the model evaluation approach, with details of the model given in Skamarock et 
al. (2008). Three different WRF variants with varying physical schemes were run over the 
Greater Sydney region (Figure 1) from 1999 to 2009 with hourly resolution. These model 
variants are identically driven by the 6-hourly boundary conditions from the NCEP–NCAR 
reanalysis project (NNRP) (Kalnay et al. 1996) with an outer 50-km-resolution nest and an 
inner 10-km-resolution nest that covers the study region. Both nests used 30 vertical levels 
spaced closer together in the planetary boundary layer. The physical schemes used in these 
three WRF variants are outlined in Table 2. Many combinations of physics parameterizations 
have been tested over this region (Evans and McCabe 2010; Evans et al. 2012; Ji et al. 2014). 
The combinations given in Table 2 were chosen through a process that considered model 
performance and independence (Evans et al. 2013). These models were chosen as the 
regional climate models to be used within the NSW/ACT Regional Climate Modelling 
(NARCliM) project (Evans et al. 2014). 

Table 2 Physical schemes of the three WRF variants 

WRF 
variant 

Planetary boundary layer 
scheme 

Cumulus 
convection scheme 

Cloud microphysics 
scheme 

Short and long-wave 
radiation schemes 

R1 
Mellor-Yamada-Janjic/ Eta 
similarity 

Kain-Fritsch  
WRF Double Moment 
5-class 

Dudhia / Rapid 
Radiative Transfer 
Model  

R2 
Mellor-Yamada-Janjic /Eta 
similarity 

Betts-Miller-Janjic  
WRF Double Moment 
5-class 

Dudhia / Rapid 
Radiative Transfer 
Model  

R3 
Yonsei University / MM5 
similarity 

Kain-Fritsch  
WRF Double Moment 
5-class 

NCAR Community 
Atmosphere  
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The most important parameterization for rainfall extremes that differs between the models is 
the cumulus convection scheme. Two criteria must be met to trigger the Kain-Fritsch (KF) 
scheme (Kain 2004). First, the temperature of an air parcel at its lifting condensation level 
(plus a small perturbation) must be greater than the environmental temperature at that level. 
Second, the parcel is released from this level with an initial vertical velocity and moves 
upward experiencing the effects of entrainment, detrainment and water loading. If the 
vertical velocity remains positive over a distance exceeding a threshold (typically 3-4km) then 
deep convection is activated. The scheme then increases the mass fluxes incrementally until 
the Convective Available Potential Energy (CAPE) is reduced by at least 90%.  

The Betts-Miller-Janjić (BMJ) scheme (Janjić 1994) requires three conditions to trigger 
convection: at least some CAPE; convective cloud depth exceeding a threshold value; and 
moist soundings. This scheme does not explicitly produce a convective mass flux, instead it 
relaxes the atmosphere toward a set of reference equilibrium states using a time scale that 
depends on the “cloud efficiency”. This scheme is comparatively simple and computationally 
efficient, making it a good candidate for long climate simulations. 

The planetary boundary layer scheme can also effect rainfall by changing the lower 
atmosphere, impacting the requirements to trigger the convection schemes. These 
parameterizations produce a well-mixed layer at the bottom of the atmosphere that is caused 
by the heating of the surface and hence has a strong diurnal cycle. The Mellor-Yamada-Janjić 
(MYJ) scheme (Janjić 1994) is a one dimensional prognostic turbulent kinetic energy scheme 
with local vertical mixing. The Yonsei University (YU) scheme (Hong et al. 2006) is a non-local-
K scheme with an explicit entrainment layer and parabolic K profile in the unstable mixed 
layer. The two methods produce different growth rates and overall planetary boundary layer 
heights. 

The WRF simulation results are compared to observed sub-daily rainfall at 69 subdaily rainfall 
sites with five-min resolution from the Greater Sydney, Australia (black solid points in Figure 
1). The 1-hour, 3-hour, 6-hour and 12-hour annual maxima were used for analysis through 
accumulation based on the five-min rainfall records. To enable a reasonable comparison, each 
rainfall gauge was related with a grid point from the WRF model that had the minimum 
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spatial distance to this gauge. As such, 69 different grid points were determined to enable a 
comparative analysis against the observations.  

 

Figure 1:  Spatial rainfall datasets (black solid dots) from the Greater Sydney region. 

4: Motivation of model evaluation using the physically -meaningful metrics  

Figure 2 shows the mean of annual maximum rainfall intensity over the study domain for both 
observations and simulations, for durations from one to 12 hours. The observed rainfall 
intensities exhibit significant spatial variations for each duration, with generally higher rainfall 
intensity near the coast compared to further inland. The spatial gradient is high for all 
durations, with the rainfall intensity of the most intense stations being as much as three times 
higher than the rainfall intensity of the least intense stations.  

The WRF results show significant differences with the observations, and between the 
different parameterisations (Table 2). For the 1-hour rainfall extremes, R1 appears to 
reasonably represent the observed rainfall intensity for gauges in the inland, while R3 shows 
better performance along the coastline. In contrast, R2 exhibited a significantly overall better 
performance compared to R1 and R3 for durations from 3-hour to 12-hour. None of the 
models entirely reproduce the observed rainfall intensity at all durations, with biases up to 
approximately 50% for some locations. Furthermore, the model does not appear to simulate 
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the magnitude of the spatial variability, with the difference between the most intense and 
least intense grid points being less than the observed data. 

 

Figure 2:  Spatial map of the average annual maximum rainfall intensity over the period from 
1990-2009, with dots and shading representing observations and simulations, 
respectively. 

Based on the simulation results presented in Figure 2, it is clear that the models do not 
perfectly represent extremes across the full spatial domain for any duration. In such 
circumstances, it would be common to bias correct the RCM outputs to obtain a closer match 
with the observed data (Maraun 2013). However, prior to recommending such a course of 
action we ask: are the physical processes that lead to extreme rainfall represented with 
sufficient realism to support bias correction? This motivates the use of physically meaningful 
metrics covered in the next section. 

5: Results and Discussion 

4.1: Diurnal cycle  

We examined the diurnal cycle using the 1-hour annual maxima from the WRF models and 
the observations. The number of extreme events occurring at each time of day was calculated 
for each rainfall gauge using Equation (1), and the occurrence statistics were then averaged 
across the 69 gauges (or the 69 grid points closest to the gauges for the WRF results) to 

R1 R2 R3

1-hour

3-hour

6-hour

12-hour
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obtain a representative diurnal cycle over the study region. The results are shown in hourly 
increments for the observations and the three WRF variants (Figure 3).  

There is a strong diurnal cycle in the occurrence of rainfall extremes for the observations, with 
a six-fold greater number of occurrences during the peak hour (4pm) relative to the hour with 
the fewest extremes (4am). Compared to the observations, all three WRF models exhibited 
overall similar patterns in the diurnal cycle, although the period with the greatest number of 
occurrences was between one and three hours later than the observations. This implies that 
the convection-parameterization schemes in Table 1 are unable to fully represent the physical 
processes that drive the deep convection (i.e. the activation of the convection scheme occurs 
too late) in the Great Sydney region. 

 

Figure 3:  Results of diurnal cycle (OD(t)), with percent of extreme occurrences at each time of day 
averaged over 69 gauges. 

In addition to the delay in peak rainfall occurrence, simulations R1 and R3 also produced a 
larger number of morning extremes than observed. These extremes are generally driven by 
large-scale convergence, suggesting that the KF convection scheme (common to both 
simulations), once triggered by such convergence, produces extreme rainfall too frequently. 
Specifically, the extremes are produced by a combination of the convective scheme 
consuming the available CAPE, and the tendency for this scheme to produce unrealistically 
deep saturated layers thereby also activating the microphysics scheme rainfall (Glimore et al. 
2015).  

To gain further insight into the WRF’s delay in the main peak as shown in Figure 3, we 
analyzed the statistics of starting time of the hourly annual maximum events. It was found 
that the three WRF models were able to reasonably reproduce the starting time of the rainfall 
extremes (not shown). This suggests that the WRF’s delay in the peak hours is mainly caused 
by the delay in reaching the maximum hourly rainfall rate rather than the delay in the trigger 
time.  
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4.2: Seasonal cycle 

The 1-hour, 3-hour, 6-hour and 12-hour annual maxima accumulated from the 69 gauges and 
co-located WRF grid points were considered to enable the seasonal cycle analysis, with results 
shown in Figure 4. The spring, summer, autumn and winter respectively corresponds to 
March-May, June-August, September-November, and December-February of the next year. 
The observations (black bars) showed strong seasonal cycles for all durations. For example, 
approximately 50% of 1-hour annual maximum rainfall events occurred in summer compared 
to only 7% in winter.  

 

Figure 4:  Results of seasonal cycle (OS(t)), with percent of extreme occurrence at 
each season of year averaged over 69 gauges.  

The three WRF models were able to reproduce the observed seasonal cycle for the 1-hour 
duration extremes, but showed some biases for the longer durations. For durations of three 
hours or longer, the three WRF models consistently underestimated the extreme occurrences 
in spring, but overestimated events in autumn. For winter, the R1 and R2 simulations 
exhibited a lower and higher number of longer-duration extreme events, respectively, 
compared to the observations. In contrast, the R3 simulations yielded a good agreement with 
the observed events with longer timescales as shown in Figure 4. R1 outperformed the other 
two WRF variants in terms of reproducing the extreme events in summer for shorter 
durations (1-hour and 3-hour), while R3 became the better alternative for summer extremes 
with larger timescales.  

The generally good performance in both the summer and winter for R1 and R3 for all 
durations suggests that the KF convective scheme, which is shared by these configurations, is 
able to generate extreme rainfall under both strongly thermally driven convective 
environments (summer) and convection driven largely by synoptic scale convergence (winter). 
The BMJ scheme used in R2, on the other hand, is able to do this for 1-hour rainfall extremes 
but becomes progressively more winter-dominated at longer durations. Hence, in thermally 
driven convective environments the BMJ scheme is often able to stabilize the atmospheric 
column more rapidly than the observations suggest. In contrast, in situations dominated by 

1-hour 3-hour

6-hour 12-hour
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synoptic convergence, the BMJ scheme is able to sustain extreme rainfall rates longer than 
the observations suggest. 

The reason for differences between the model simulations and the observations in the 
transition seasons (spring and autumn) is less clear. During these seasons, there is a shift in 
climatology from largely convective events in summer to large-scale frontal systems in winter. 
There is some evidence that the dominant climatology is changing particular in autumn both 
for average rainfall (Delworth and Zeng, 2014) and for extremes (Zheng et al, 2015). The 
capacity of WRF to simulate these apparent changes in extremes is currently not known, and 
is difficult to assess for the present study because the period of analysis (i.e. 20 years) is 
unlikely to be sufficient to explore long-term trends. Further research is therefore needed on 
the capacity of WRF to simulate the apparent systematic changes over the transition seasons. 

4.3: Dependence between rainfall intensity and temperature  

As outlined in Section 2.3, we used the method described in Lenderink and van Meijgaard 
(2008) to calculate the temperature dependence from both the observational and simulated 
rainfall extremes for 1-hour, 3-hour, 6-hour and 12-hour durations. Figure 5 shows the 
results, with black dashed lines representing the result from each individual rainfall gauge and 
black solid line indicating the composite result. All the temperature dependence scaling from 
each grid of the three WRF variants are shown by the grey dashed lines and the composite 
results are given by the red (R1), blue (R2) and green (R3) solid lines.  

It is seen from the observations that the temperature dependence scaling of the 1-hour 
rainfall extremes showed a good agreement with the empirical value of 7% per °C (orange 
dashed lines) for most of the temperature range considered, but this scaling rate decreased at 
the highest temperatures. The observations also show lower rates for longer timescales such 
as the 6 and 12-hour extremes. This observation matched well with the results in Hardwick 
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Jones et al. (2010), and does not show the super-CC scaling that has been found in other 
studies (e.g. Lenderink and van Meijgaard 2008). 

 

Figure 5:  Results of temperature scaling rate from the observations (OBS) and three WRF models 
(R1, R2, and R3). The black and grey dashed lines respectively represent the temperature 
scaling rates from the rainfall gauges and the grid points of the three models. The solid 
lines are the composite temperature scaling rates and the orange dashed lines represents 
the CC scaling rate of 7% per °C. 

The simulated CC scaling rates exhibited a similar pattern across all durations with the 
observations. Furthermore, the level-off and decreases in the temperature scaling rates at 
higher temperatures were overall captured by the simulations. This demonstrates that the 
three WRF models with different parametrization schemes are all able to characterize the 
empirical relationship between rainfall intensity and temperature.  

Despite reasonable consistency in terms of the scaling rates, the simulated rainfall intensity 
was consistently lower than the observed events across different temperatures. Interestingly, 
such an underestimation becomes more prominent for rainfall extremes with finer 
timescales. Given that the short-duration intensive rainfall is most commonly caused by local-
scale convective activity (Berg et al. 2013), this bias can be either caused by the slight 
deviations in the spatial locations between the selected model grids and the rainfall gauges, 
or the models’ insufficient convection depths. The WRF models can better reproduce the 
physical dependence between rainfall intensity and temperature for longer-duration events 
that are associated with larger-scale meteorological conditions (Delworth and Zeng 2014). It is 
worth noting that the modelled scatter (grey lines) produce a smaller spread than seen in the 
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observations, although his may at least partly be due to the comparison between point 
observations and grid point averages.  

In comparing the relative performance of the three models, R1 and R3 yielded an overall 
better consistency with the observations than R2 in terms of the rainfall intensity, which is 
especially the case for longer-duration rainfall extremes such as 12-hour. This differentiation 
between models using convection schemes KF (R1, R3) and BMJ (R2) at high temperatures 
matches the seasonal result where R2 is found to produce fewer summer and more winter 
extreme events. However, R2 showed better agreement with the observations in terms of the 
mean temperature scaling rates, which will be further confirmed in Figure 6 below.  

The spatial patterns of the mean temperature scaling rates were also considered for both the 
observations (dots) and simulations (background) as shown in Figure 6. The observations 
showed that the temperature scaling rates overall reduce when the rainfall duration 
increased, matching well with the results shown in Figure 5. Such a trend is well captured by 
R2, but not for R1 and R3.

 

Figure 6:  Spatial map of the temperature scaling rates, with dots and contours representing 
observations and simulations.  

All the three WRF models yield a similar performance in simulating the spatial structure of the 
temperature scaling rates for the 1-hour rainfall extremes, which also exhibited a reasonable 
agreement with the observations. However, the models produced overall larger temperature 
scaling rates than the observed values for the 3-hour extremes in the coastline region. The 
most noteworthy difference between the three models is reflected by the simulations for the 

R1 R2 R3
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12-hour rainfall extremes, where R2 shows a good agreement with the observations, whereas 
R1 and R3 significantly overestimate the temperature scaling rates overall.  

4.4: Temporal scaling  

The temporal scaling results are shown in Figure 7, where the rainfall depths of sub-daily 
extremes for each gauge are represented in terms of the percentages of the 24-hour rainfall 
amount (black dashed lines). The orange dashed line indicates the case where the rainfall is 
uniformly distributed within the 24 hours.  

Compared to the observations, the three WRF models all yielded overall reasonable 
performance across different time resolutions, although their simulated distributions for 
relatively short-duration rainfall extremes were less intense relative to the 24 hour extremes. 
Another important result is that the temporal scaling of the WRF results is consistently less 
variable than to the observations. This is indicated by comparing the range of the temporal 
scaling results of the R1 simulations (red shaded region) across the 69 locations with those 
from the observations (grey shaded region). The temporal scaling ranges of R2 and R3 are 
similar to R1 (not shown). 

 

Figure 7:  Results of temporal scaling rate from the observations (OBS) and three WRF models (R1, 
R2, and R3). The grey and light shaded region respectively represents the ranges of the 
observed results (69 gauges) and R1 simulations (69 grid points). The solid lines are the 
composite temporal scaling rates from the 69 gauges. The orange dashed line indicates 
the uniform temporal scaling rate. 

4.5: Spatial structure  

Figure 8 shows the pairwise extremal coefficient )(  estimates (Equation 4) from the 

observations (black circles) and R1 simulations (red “+”) for 1-hour, 3-hour, 6-hour and 12-
hour durations. As shown in this figure, the observed spatial dependence among the 1-hour 
rainfall extremes declined sharply after a very short distance, whereas the dependence 
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reduction among the 12-hour annual maxima was significantly more gradual, suggesting that 
the 12-hour rainfall extremes have an overall stronger spatial dependence compared to the 1-
hour events. This is expected since the short-duration extremes are more likely to be driven 
by the local-scale convective activity, while the longer-duration events are associated with 
larger-scale meteorological forcings (Westra et al. 2014). Such a variation in spatial 
correlation as a function of duration was also overall captured by R1. The simulated spatial 
correlation from R1 is overall consistent with the observations, although it overestimated the 
correlation strength for locations with shorter distances, with biases being more significant 
for longer durations (e.g., 12-hour). R2 and R3 simulations are not shown due to their 
similarity with R1 results. 

 

Figure 8:  Spatial correlation versus distance for the observed annual maxima at 69 rainfall gauges 
(black circle) and for the 69 grid points from R1 (red ‘+’). 

5: Conclusions  

Research in the field of regional climate modelling for rainfall extremes has mainly focused 
either on the applications of RCMs, or on the evaluation of RCM-predicted rainfall intensities 
and frequencies using the observations. Few RCM evaluation studies have considered both 
the capacity of the RCM to simulate the extreme rainfall statistics as well as whether RCMs 
can reproduce the physical processes associated with the rainfall extremes at different 
timescales.  

To this end, this study has developed five physically meaningful metrics to measure the RCM’s 
behaviour. These metrics comprise the diurnal cycle, seasonality, relationship between 
intensity and temperature, temporal scaling, and the spatial structure of rainfall extremes, 
and collectively they provide a robust platform to evaluate the model’s performance in 

1-hour 3-hour
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capturing the physical mechanisms behind the rainfall extremes. The WRF model with a 10 km 
grid spacing was used to demonstrate the utility of the proposed metrics. Three WRF variants 
with different parametrization schemes were run over the Greater Sydney region from 1990 
to 2009, with simulations validated using data from 69 rain gauges. 

The results of the analysis are summarised in Table 3. In general, the WRF models showed 
reasonable matches with the observations in terms of the overall physical processes, although 
they cannot entirely capture the relevant mechanisms. In particular, some biases were 
observed in the amplitudes of the diurnal and seasonal cycles compared to observations. The 
physical dependence between rainfall intensity and temperature was well reproduced by the 
WRF models, although the short-duration rainfall intensity was significantly underestimated.  

Table 3 Summary of the measure metric results 

Metrics 
Regional climate models (R1, R2, R3) 

Overall performance  Relative performance 

Diurnal cycle 
Successfully captures the diurnal cycle, but 

with delays in the peaks. 
Models perform similarly 

Seasonal cycle 

Perform reasonably well for 1-hour extremes, 

but show amplitude biases for longer-

durations. 

R2 produces worst seasonal cycle 

for longer duration extremes 

Temperature scaling 

rate 

Exhibit good agreement with observations, 

although underestimate the rainfall intensity 

especially for short durations. 

R1 and R3 perform better than R2 

in rainfall intensity, but R2 is 

better in reproducing the mean 

temperature scaling rate 

Temporal scaling 

Shows reasonable consistency with 

observations, but with lower rainfall depths 

for short-durations. 

R2 is better 

Spatial structure  

Can represent the overall spatial structure 

especially for the long-duration rainfall 

extremes and temperature scaling rates.  

R2 is better 

It is difficult to provide definitive guidance on the absolute model performance required (both 
in terms of the extreme rainfall statistics themselves and the other metrics discussed here) 
prior to recommending the use of model outputs for the development of future climate 
projections. In the case of the WRF results presented here, we suggest that the overall 
performance against all the metrics was sufficient to recommend the model for use in 
developing extreme rainfall projections in a future climate, although bias correction may be 
necessary given the differences in annual maximum rainfall discussed in the context of Figure 
2. The lack of a clearly superior WRF parameterisation as shown in Table 3 suggest that it 
would be prudent to use all three models as part of an ensemble, rather than choose a single 
‘best’ model.  

The results presented above were specific to the case study region and the three WRF model 
parameterisations that were analysed. However, the general approach is suitable for 
adoption in similar studies of extreme rainfall. By providing a more comprehensive 
assessment of the performance of RCMs in simulating rainfall extremes, it becomes more 
likely that possible flaws in modelling will be exposed and used as part of a continual cycle of 
model improvement. This approach will not only improve the confidence that can be placed 
in model simulations, but will also build knowledge for improving the model representation, 
which will ultimately lead to higher quality projections of extreme rainfall. 
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