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Abstract

The use of state space techniques to track targets using measurements from multiple
sensors is considered. In particular, the operation of the asynchronous fused Kalman
filter is investigated and evaluated, using real data collected from a collocated tracking
radar and optical tracking system. An analysis of the effect of additional sensors on the
frlter's sensitivity to model mismatch is carried out.

The performance of the tracking filter is unacceptable in multi-target and/or cluttered
environments. This poor performance is attributed to the filter treating all measurements

as if they originated from the target of interest. This is often not the case in real en-

vironments; therefore some form of data association is required. Two algorithms are

developed to overcome this inadequacy, the multi-sensor Probabilistic Multi-Hypothesis
Tracking (msPMHT) algorithm and the multi-sensor Probabilistic Least Squares tacking
(msPLST) algorithm. Both these algorithms estimate the measurement to target assign-
ments and the target states simultaneously, the msPMHT using maximum likelihood
techniques and the msPLST utilising least squares.

Similarities and differences between the linear Gaussian msPMHT and the msPLST
algorithms are discussed. The characteristics and performance of both algorithms are

compared using simulated and real data.
A general msPMHT algorithm is introduced with multiple measurement models for

each physical sensor. Measurement to sensor assignments, associating individual measure-
ments with selected sensor models, are estimated along with the measurement to target
assignments and target states. This allows the algorithm to adapt to varying sensor
parameters by changing sensor models.
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Glossary

ø posteri,ori Reasoning or processing that arrives at causes from effects, i.e., knowl-
edge gained from processing.

a pri'ori Denotes knowledge gained independently of processing, i.e., known before
processing commences.

active sensors Sensors that locate targets by emitting energy and detecting any re-
sulting reflections.

actual FG The fusion gain calculated or estimated taking into account any filter model
errors.

actual TEC The track error covariance obtained when errors in the filter's models are
taken into account.

additional sensor The sensor that is added to a single sensor system to produce a dual
sensor system.

assignment probability The probability of a particular measurement being produced
by a specified sensor model and target.

assumed FG The fusion gain calculated when all filter parameters are assumed to be
matched to the data.

assumed TEC The track error covariance calculated when it is assumed that the filter
models are matched to the data.

asynchronous fused Kalman filter A variable update rate Kalman filter that uses
measurements from multiple dissimilar sensors.

asynchronous fusion see asynchronous sensor fusion

asynchronous sensor fusion Combining measurements, from multiple sensors, that
occur at different times, at different rates and, possibly, intermittently.

asynchronous sensors Two or more sensors that do not consistently produce simul-
taneous measurements.

automatic video tracker A device that detects targets in a video image and provides
a measure of their positions.

clear sky An environment devoid of other targets and significant clutter.
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xxvl GLOSSARY

composite measurement A single synthetic measurement produced by compressing

all measurements in a measurement scan into a single entity.

composite measurement model A single measurement model representing a com-
posite or compressed measurement.

continuous time process noise The process noise in the continuous time domain
from which the discrete time process noise is derived'

data association The process of determining the measurements or information pro-

duced by each target or source.

data compression The combining of multiple measurements into a single composite

measurement.

data fusion The combination of information from multiple sources into a single entity.

dissimilar sensors Sensors that differ in one or more of measurement type, measure-

ment function, noise statistics or physical measurement characteristics.

Doppler velocity The velocity of a target in the direction directly toward the sensor,

i.e., the negative of the range rate.

dynamic model see process model

Expectation-Mæcimisation An iterative algorithm for estimating the parameters de-

scribing the probability distributions of unknown random variables from incomplete
data.

fused Kalman filter A Kalman filter operating on measurements from multiple sen-

SOTS.

fusion gain The ratio of single sensor track error covariance to multi-sensor track error
covarrance.

gating Limiting the measurements to be processed to those that meet some criteria,
e.9., those within some specified distance from the predicted target position.

general multi-sensor Probabilistic Multi-Hypothesis Tlacking An extension of
the msPMHT algorithm that allows multiple sensor models for each physical sensor.

Kalman filter A state space tracking filter that estimates the state of a system from
past and current measurements, using a model of the expected target dynamics.

Kalman gain Gain or weight applied to the measurement innovation by the Kalman
filter to correct its state estimate.

Kalman smoother A state space tracking algorithm that estimates each state of a
system using all measurements within the batch.

least squares A technique that produces state estimates by minimising the squared
errors between the measurements and the target states.

maximum a posteri,ori A technique that produces state estimates by maximising
the conditional probability of the states, given the measurements.
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maximum likelihood A technique that produces state estimates by maximising the
conditional probability of the measurements, given the states.

measurement level fusion The combining or fusing of measurements from multiple
sensors into a single composite target track.

measurement matrix A matrix describing the relationship between a measurement
and the state of a particular target.

measurement model A model representing the characteristics of the sensor and the
relationship between the sensor's outputs and the target state.

measurement noise The part of the measurement model that represents the uncer-
tainty in the model, plus any noise originating from the sensor, target or environ-
ment.

measurement rate The frequency at which measurements arrive from a sensor or sen-
sors, sometimes referred to as the sample rate or measurement frequency.

measurement scan A set of simultaneous measurements from one or more sensors,
i.e., all the measurements occurring at time f¿.

measurement to sensor assignment Contains a number identifying the sensor that
provided the corresponding measurement.

measurement to target assignment Contains a number identifying the target that
produced the corresponding measurement.

minimum mean square error A technique that produces state estimates by minimis-
ing the expectation of the squared errors between the state estimates and the true
states, given the measurements.

mismatch factor The ratio of actual FG to assumed FG, giving a measure of the
sensitivity to model errors of a multi-sensor tracking filter relative to that of a single
sensor tracking filter.

mismatch ratio The ratio of the assumed value of a filter parameter to the actual value
representing the data.

multi-sensor Probabilistic Least Squares Tlacking An algorithm for multi-sensor
multi-target tracking that estimates soft target assignments and target states from a
batch of measurements using least squares techniques.

multi-sensor Probabilistic Multi-Hypothesis Tlacking An algorithm for multi-
sensor multi-target tracking that estimates soft target assignments and target states
from a batch of measurements using maximum likelihood techniques.

observer A system that estimates the state of another system using the other system's
inputs and outputs.

original sensor The sensor that is common to both a multiple sensor system and a
single sensor system.

passive sensors Sensors that locate targets by detecting energy emitted from the tar-
get.
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positional fusion .eee sensor registration

Probabilistic Multi-Hypothesis Tracking A multi-target tracking algorithm that
estimates soft target assignments and target states from a batch of measurements.

process model A model representing the expected or assumed dynamic behaviour of
a target.

process noise The part of the process model that represents the uncertainty in that
model.

sensor assignment see measurement to sensor assignment

sensor assignment probability The probability that a particular measurement was
produced by a specified sensor model.

sensor fusion The combination of measurements from multiple sensors into a single
entity.

sensor measurement probability The probability that a measurement is produced
by a particular sensor model, i.e., the fraction of total measurements produced by a
sensor model at a particular time.

sensor models Virtual sensors used to represent the characteristics of a physical sensor
under specific operating conditions.

sensor registration The spatial and temporal alignment of sensors to ensure that each
target appears at the same position and time in each sensor.

sensor sets A group of sensor models common to a particular physical sensor.

similar sensors Sensors that produce the same type of measurement and have the same
measurement functions, statistically equivalent noise and similar physical measure-
ment characteristics.

state estimate Estimated value of the target's state.

state estimate error The error between an estimate of a target's state and its true
value.

state transition matrix
over time.

A matrix describing how a target's dynamic state propagates

synchronous sensors Two or more sensors that consistently produce simultaneous
measurements.

target assignment see measurement to target assignment

target assignment probability The probability of a measurement originating from a
particular target.

target assignment weight The weighting factor applied to a measurement by a par-
ticular target model.

target association probability see target assignment probability
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target measurement probability The probability of a measurement originating from
a particular target, i.e., the fraction of total measurements at a particular time orig-
inating from the specified target.

target models A representation of a target containing a dynamic model and appropri-
ate measurement models.

target state A vector containing the current dynamic state or condition of a target.

target track The complete set of estimated states of a target over a time interval of
interest. Also referred to as the track history.

track error The error between the estimated target state and the true state of the
target.

track error covariance
and their true values.

Covariance of the error between the estimated target states

track level fusion The combining or fusing of target tracks from multiple sensors into
a single composite track.

tracker see tracking filter

tracking filter An algorithm that estimates the state of a target or system from noisy
measurements.

validated measurements Those meâsurements that are located within a validation
region, and may be used for tracking.

validation region A region in the immediate vicinity of the predicted target position
whose space is defined by some appropriate criteria. Only those measurements lo-
cated within the validation region are considered for tracking purposes.

variable update rate Kalman filter A Kalman filter operating on measurements ir-
regularly spaced over time.

weighted least squares A least squares algorithm where the individual error terms
are weighted according to some criteria.
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Introduction

In surveillance applications, target tracking techniques are used to obtain an estimated

target trajectory or track history for each target in a region of interest. Measurements

from one or more sensors, such as radar or infrared, provide the information necessary

to estimate these tracks. Applications that use target tracking include air traffic control,

maritime surveillance and building security.

Automatic target tracking has traditionally been restricted to using measurements

from a single sensor. Although multi-sensor tracking has only received significant publicity

in recent years, it has been in use for much longer. Single sensor target tracks from

different sensors have traditionally been combined or fused by human operators. These

operators effectively performed the central processing function for multi-sensor systems.

For example, the pilot of a fighter jet monitors the radar and infrared displays and uses the

information from both to determine the position and possible identity of other aircraft.

The ability of humans to successfully perform this task is not surprising, as the human

brain continuously combines information from the body's senses.

Recent interest in multi-sensor systems has centred on automating the fusion process.

This reduces the workload of the operator and, through suitable processing and display

techniques, can provide the operator with more information in a format that is readily

absorbed.

A key problem when using multiple sensors is determining which measurements to use

for tracking a particular target. This problem, known as the data association problem,

is not unique to multi-sensor tracking, but appears whenever measurements may have

been produced by objects or phenomena other than the target of interest. When tracking

single or widely spaced targets in the absence of significant clutter or other noise, it
may often be assumed that all measurements originate from the target of interest. In

this case, the measurement volume of the sensor and/or restrictions in the tracking filter

algorithm, e.g., gating, limit the available measurements to those near the expected target

location, effectively eliminating the need for explicit data association. As the environment

becomes more dense through the introduction of other targets and clutter, significant

1



2 CHAPTER 1. INTRODUCTION

numbers of measurements within the sensor's measurement volume or tracking gate may
have originated from other targets or clutter sources. To successfully track the target
(or targets) of interest, it is essential to determine which of the available measurements

belong to the target (or targets) and are suitable for tracking.

The data association problem is compounded by using measurements from multiple
sensors, particularly when the sensors are of different types. Different sensors obtain
measurements through different physical processes, and therefore one sensor may see a
particular target that remains undetected by another sensor. For example, a radar may
not see an approaching low altitude super-sonic missile because of its low radar cross-

section at this aspect and the clutter that is evident at low elevation angles. However,

it may be detected by an infrared sensor because of its high skin temperature caused

by friction with the atmosphere. The failure of a particular sensor to detect a target
may also be caused by the target being outside the detection range of that sensor. A
further problem relates to the different dimensionality of the measurement volume for
different sensors. This is particularly evident when using both active (e.g., radar) and
passive (e.g., infrared) sensors. The active sensors are often able to discriminate in angle
(azimuth and elevation) and range, providing a restricted three dimensional measurement
region. However, passive sensors are usually only able to provide angular discrimination
and, because they can't separate targets in range, all targets that fall inside the angular
field of view and the detection range will potentially produce measurements. This makes
it very difficult to determine which of the multiple targets detected by the passive sensor

is actually the one observed by the active sensor.

1.1 Motivation

The Tactical Surveillance Systems Division (TSSD) of the Defence Science and Technology
Organisation (DSTO) Australia is interested in improving target tracking by combining
radar measurements with measurements from other sensors. Therefore it has fitted its
Generic Pulse Doppler Radar (GPDR) with an optical video camera and tracking system
to collect multi-sensor data. This led to the development of the asynchronous fused
Kalman filter (AFKF) for tracking targets using asynchronous measurements from the
radar and optical tracker.

When designing the AFKF, the choice of models and their parameters proved to be
important. Real physical objects behave differently to the approximations represented
by these models. The effect of these differences on tracking performance deserves consid-
eration when selecting the models and their parameters. This provided the incentive to
investigate the effect additional sensors have on a system's sensitivity to model errors.

Evaluating the AFKF with real data revealed that not all of the available measure-
ments should be used for tracking, especially when other targets or clutter are present.
In particular, the optical sensor, which has no range discrimination, was often seduced
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from the target of interest by other targets and clutter. The AFKF weighted the optical

angular measurements significantly higher than those from the radar, because the optical

sensor had better angular resolution and lower noise than the radar. Therefore the AFKF

was also seduced from the target of interest and, because the sensors followed the new

target, the original target eventually left the measurement region of both sensors, causing

track loss. This problem provided the motivation to develop multi-sensor multi-target

association and tracking algorithms.

L.2 Overview of Sensor Fusion

Data fusiorz is the combination of information from multiple sources into a single en-

tity. This information may take various forms, including physical measurements, audio

messages, computer records, images and written documents. Some possible sources of

information are physical sensors, magnetic tape, databases and people.

Data fusion can be viewed as a hierarchical structure, as illustrated in the proposal

by the Data Fusion Sub-panel (DFS) for the Joint Directors of Laboratories (JDL) in

the United States Department of Defense (figure 1.1). This widely accepted proposal

introduces three successively higher levels of fusion, with sensor management providing

feedback for sensor control.

3

Sensors

Figure 1.1: US-JDL data fusion levels

Sensor leuel fusion (level 1) refers to the combining or fusing of information at the

sensor or source level. This level deals directly with sensor measurements and informa-

tion from other sources. Detection, parameter estimation, tracking and identification are

among the tasks found at this level.

Situation a,ssessn't,enú (level 2) occurs when outputs from level 1 fusion, e.g., target

tracks, are processed. Instead of measurements and raw information, objects such as

aircraft, vehicles and people are introduced, and the relationships and interactions between

these objects are analysed. This information is used to build a picture or model of the

environment and determine rvhat the objects are doing and how they are doing it.
In threat o.ssessrnent (level 3), the behaviour of the objects from level 2 is analysed.
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This level is concerned with the reasons for, and the significance of, the behaviour of the

objects. This information may be used to make decisions and initiate responses.

Sensor rna,nagenxer¿ú uses the outputs from the above levels to control and configure

the individual sensors and information sources. This optimisation aims to maximise

the system's performance for a specific application and operating environment. Sensor

management tasks include emission control, sensor cuing and scheduling.

Sensor fusion is the combination of measurements from multiple sensors into a single

entity. From this definition, it is obvious that sensor fusion is a restricted case of the
more general data fusion, where the available information is limited to measurements

from physical sensors. Therefore sensor fusion tasks fit into level one fusion because this
is the only level that deals directly with measurements. However, level 1 fusion is not
restricted solely to sensor fusion, because information other than sensor measurements,

e.g., intelligence reports, may be processed at this level.

Sensor fusion is used in many applications, including tracking, identification, manu-

facture and assembl¡ surveillance and robotics. It is not a technology in its own right
but an extension of the existing technologies used by these applications, ê.g., filtering,
artificial intelligence, neural networks, estimation theory and wavelet theory.

Similar sensors produce the same types of measurements (e.g., bearing only, bearing
and range, etc.) and have similar characteristics (i.e., noise and measurement models).

Fusing measurements from similar sensors does not provide any nerv or different infor-
mation, instead it provides additional meâsurements of the same type. These additional
measurements improve system performance by increasing track accuracy, and they im-
prove overall system reliability through sensor redundancy. Dissimilar sensors provide

additional information through different measurement types or different characteristics

such as measurement accuracy and resolution. For example, a radar may provide accu-

rate range and low resolution angle measurements, and an infrared sensor may provide

high resolution angle measurements. Fusing these two sensors provides accurate range

and high resolution angle measurements, more information than either sensor is capable

of providing in isolation.

A suite of sensors can operate either synchronously or asynchronously. Synchronous
sensors have the same measurement update rates and are synchronised so that their
measurements occur at the same times. Sensors in an asynchronous system may have

different update rates or just operate with independent timing. In most real applications,
dissimilar sensors operate asynchronously. In this case, it is not really the individual
measurements that are fused but the data streams as a whole.

Fusion systems may be centralised or distributed. In centralised systems, all fusion
is performed at a central location using information received from every sensor node.

A distributed system has no central node; the fusion takes place at every sensor node,

using information received from every other node. The centralised system is subject to
total system failure if the fusion centre fails, whereas the distributed system can still



T.2. OVERVIEW OF SENSOR FUSION

operate, albeit at reduced capability, if one node is lost. However the distributed system

requires substantial processing resources at all nodes, not just at a central node, and the

communication channels must provide bi-directional data transfers between every node.

In practice, hybrid schemes between these two extremes may be employed.

The actual fusion may take place at either lhe track level or the measurement level.

In track level fusion (figure 1.2), each individual sensor produces target tracks using only

its own measurements. It is these tracks from each sensor that are fused at either the

central node or each of the sensor nodes, depending on whether the fusion is centralised

or distributed. When fusing at the measurement level, the measurements are sent to

Sensor 1

Measurements

Fl¡sed Thacks

Sensor 2

Measurements

Figure 1.2: Track level fusion

either the central node or every sensor node for processing. As shown in figure 1.3, the

multi-sensor measurements are used together with a single dynamic model to produce the

fused tracks.

Sensor 1

Measurements

F\sed Tlacks

Sensor 2

Measurements

Figure 1.3: Measurement level fusion

The multi-sensor tracking task may be separated into three distinct phases, sensor

registration, data association and data combination (figure 1.4). In this context, the data

may represent either tracks for track level fusion or measurements for measurement level

fusion.
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Fused Data

Sensor 1

Data

Sensor 2
Data

Figure 1.4: F\rsing data from two sensors

Sensor registration, also known as positional fusion, aligns the data from each sensor

both spatially and temporally. It ensures that all sensors see the same târget at the same

point in space and time. This task is generally simpler for single platform configurations,

because the relative positions and measurement latencies of all sensors are known.

Data association determines which measurements originate from a particular target
and therefore may be used for tracking that target. As incorrect measurement association

can easily result in loss of track, this is probably the most important (and difficult) part
of the fusion process.

Data combination is the combination of the data into a single entity. In tracking
applications, the mea,surements from all sensors are combined into target tracks.

Multi-sensor tracking provides a number of benefits. These include improved track
accuracy from the additional measurements supplied from the additional sensors and
greater system reliability through the redundancy provided by multiple sensors. The use

of dissimilar sensors improves system robustness to clutter and countermeasures. Active
emissions may be reduced by tracking with passive sensors and using the active sensors for
short periods to update the range estimates. However multi-sensor tracking requires addi-
tional sensors and increased processing capability. This increases the system complexity,
resulting in increased development and hardware costs and increased maintenance.

1.3 Thesis Outline and Contributions

This thesis is primarily concerned with multi-sensor tracking. A variable update rate
Kalman filter is used to track a single target using asynchronous measurements from two
sensors. The operation and performance of the filter is investigated using simulated and
real data.

The first key contribution of this thesis is the application of an
asynchronous Kalman filter to the fusion of real data from a rada¡
and optical sensor.

The above investigations highlighted the need for data association and thus led to a
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multi-sensor multi-target problem formulation for solving both the data association and

state estimation problems. Two multi-sensor multi-target algorithms \ryere developed as

potential solutions, and their respective performances ïvere evaluated and compared.

The second key contribution of this thesis is the development and

evaluation of two multi-sensor multi-target association and track-

ing algorithms, the multi-sensor Probabilistic Multi-Hypothesis
Tlacking and multi-sensor Probabilistic Least Squares Tlacking
algorithms.

The content of this thesis is described below. The numbers in parentheses refer to

publications as listed on page xxxi.

Relevant background information immediately follows this section in chapter 2. It
provides an overview of sensor fusion, as it is related to tracking applications, and an

extensive overview of the difficult problem of data association. Various techniques for the

association of measurements to targets are discussed in a tracking context.

Chapter 3 provides an overview of the Kalman filter and introduces a multi-sensor

variable update rate variation known as the asynchronous fused Kalman filter (4). The

results obtained from evaluating this algorithm on both real and simulated data are

presented. Tests on real iadar and optical data highlighted the problem oftrack seduction

by clutter and other targets and reinforced the need for data association.

Contribution: The formulation and eualuation of a multi-sensor single

target Kalman fi,lter tracking algorithm using real data

containi,ng radar and optical measurements from multiple

targets and clutter.

The effect of mismatch between the Kalman filter's models and the data, i.e., sensitiv-

ity analysis, is well known. Chapter 4 looks at the effect that adding a second sensor to a

single sensor Kalman filter tracking system has on the system's sensitivity to model errors.

The effect of mismatch in process noise covariance and measurement noise covariance is

investigated through simulations and theoretical calculations (3).

Contribution: Analysi,ng the effect of adding an additional sensor to a

Kalman filter's sensitiuity to errors in its process and mea-

surement noi,se couariances.

The multi-sensor multi-target tracking problem is formulated in chapter 5 for both a

simple restricted problem, where each sensor produces exactly one measurement in each

measurement sca,n, and a more general asynchronous tracking problem. This is based on

extending the formulation used in the Probabilistic Multi-Hypothesis T[acking algorithm

7
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for multi-sensor tracking. This chapter also contains a more general formulation that
provides each physical sensor with multiple sensor models to facilitate tracking under

changing operating conditions.

The derivation, for both the restricted synchronous and general asynchronous prob-

lems, of the multi-sensor Probabilistic Multi-Hypothesis T[acking (msPMHT) algorithm

is presented in chapter 6. This algorithm estimates both the target states and the

measurement to target assignments for multiple targets using maximum likelihood tech-

niques (1, 2, 6). It was derived by extending the Probabilistic Multi-Hypothesis Tlacking

(PMHT) algorithm for multi-sensor tracking.

Contribution: The deuelopment of the multi-sensor Probabilistic Multi-
Hypothesis Tracleing (msPMHT) algorithm by generalising

the PMHT algorithm for tracleing multiple targets using

rneo,surenlents from multiple s ens ors.

Chapter 6 also contains the derivation of the general msPMHT algorithm (2). This

algorithm is an extension of the msPMHT that associates measurements to sensor models,

allowing the selection of the sensor model most appropriate for the operating conditions
at that time.

Contribution: The deuelopment of the general msPMHT algori,thm for
multi-sensor multi-tørget tracking with multiple sensor

models to reflect changing operating conditions.

A similar algorithm, the multi-sensor Probabilistic Least Squares Tïacking (msPLST)

algorithm, is introduced in chapter 7 to solve the synchronous and asynchronous multi-
sensor tracking problems (5). The msPLST is a new algorithm that uses the same problem

formulation as the msPMHT, but it uses least squares to estimate the target states and

measurement to target assignments.

Contribution: A new algorithm, the multi-sensor Probabilisti,c Least

Squares Traclcing (msPLST) algorithm, for multi,-sensor

multi-target tracking using least squares techniques.

In chapter 8, the performance of both the msPIVIHT and msPLST algorithms are

evaluated using simulated and real data (5, 8). The structure of the two algorithms are

compared, and their respective performances are evaluated and compared against each

other and the fixed interval Kalman smoother.
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Contribution The eualuation and comparison of the msPMHT and

msPLST algorithms and, their respectiue performances.

Comparison of both algorithms wi'th the fired interual

Kalman smoother for tracleing single targets in multi-

target enuironments.

The main body of the thesis is completed with the conclusions in chapter 9.

Additional information is contained in the appendices as listed below.

1. The sensor fusion testbed used to collect the radar and optical data is described in

appendix A.

2. Appendix B contains the derivation of the fixed interval Kalman smoother as the

solution to the set of tri-diagonal equations used to obtain the target state estimates

in the linear Gaussian msPMHT and the msPLST algorithms.

I
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Background

T[acking is the process of estimating the state or parameters of an object or system over

a time interval of interest, using the available information or measurements. This thesis is
primarily concerned with the tracking of moving or dynamic objects such as aircraft in air
traffic control or maritime vessels in harbour surveillance. In these applications, estimates

of the dynamic state (position, velocity, etc.) of each object or target are recorded over

time. The result is a target tracle, also known as a target trajectory or a track hi,story. The
state estimator is referred to as a tracking fi,Iter or simply as a traclcer.

Various tracking filters are available, but most interest in recent times has centred

on the Kalman filter for single sensor tracking. Many single target trackers reduce to
a Kalman filter when restricted to measurements from only the target of interest, €.g.,

the probabilistic data association filter (sectíon 2.2.3). Other more complex algorithms
contain embedded Kalman filters, in particular for estimating the actual target states,

e.g., multiple hypothesis tracking (section 2.2.6).

A brief description of the Kalman filter algorithm may be found in section 3.1. Bar-
Shalom and Fortmann (1988), Gelb (1992) and Jazwinski (1970) provide a few of the many

available detailed descriptions and derivations of the Kalman filter and the underlying
estimation theory.

2.L Fusion of Multi-sensor Track Information

The fusion or combination of track information from multiple sensors may take place at the
track leuel or the rneasurentent leuel (see section 1.2). The method selected for a particular
application depends on a variety of factors such as system hardware, communication

bandwidths, processing power at each sensor and the central fusion processor (fusion
centre) and the physical layout and separation of the sensors and fusion centre.

This section is primarily concerned with tracking a single target, or tracking widely
separated targets individually on a target by target basis. However, the general concepts

introduced may be applicable to tracking closely spaced multiple targets.

11
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z.L.L Tlack Level F\rsion

When fusing at the track level, individual tracks are independently formed from the

measurements received from each sensor (see figure 1.2 on page 5). This process usually

occurs locally at the sensor and is often performed by a Kalman filter. These single sensor

tracks are combined into a single track at a fusion centre. The tracks may be viewed

as processed or compressed data and, as such, require less communication bandwidth.

However some of the original information is lost.

Early attempts at track level fusion assumed that the state estimate errors (state er-

rors) were uncorrelated between sensor tracks, i.e., the individual tracks were independent

(Bar-Shalom and Fortmann 1988, section 10.2). The combined track \ryas a weighted sum

of the individual tracks, where the weights were determined from the inverse of the state

error covariances. For example, two tracks X(1) and X(2) with state error covariancer p(t)

and P(2) were combined into a single tr¡¿s¡ ¡(/) ¿g

¡(/) : (e(rl-r a p(z)-t)-t (e(r)-r¡(r) -,u p(z)-r¡(z)) .

Bar Shalom recognised that each track for a particular target shared the same process

noise, and therefore such tracks are not independent. He formulated an optimal tech-

nique for combining these correlated tracks in which the correlation is accounted for by

cross-covariance matrices (Bar-Shalom 1981, Bar-Shalom and Campo 1986). Saha (1994)

derived the necessary constraints to ensure that the cross-covariance matrices are positive

definite.

2.L.2 Measurement Level F\rsion

Measurement level fusion involves sending all the measurements from every sensor to the

fusion centre that then combines all the measurements into a single track (see figure 1.3

on page 5). The use of a single tracking filter overcomes the correlation problem because

a single dynamic or process model is a,ssumed. This method is computationally more

demanding on the fusion centre and requires greater communication bandwidth because

more information is transmitted from the sensors. However, the availability of this ex-

tra information improves tracking performance in regard to minimising the state error

covariance, although the level of improvement depends on the ratio of the measurement

noise from each sensor (Roecker and McGillem 1988). The combination of simultane'

ous multiple measurements at any time may be performed through parallel processing

of measurements (the measurements are stacked into a single measurement vector), data

compression (the measurements are combined into a single composite measurement), or

sequential processing (the measurements are processed individually separated by a zero

prediction time interval) (Willner, Chang and Dunn 1976). Using the data compression

method, measurements from dissimilar sensors may be combined by creating dummy mea-
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surements with very large noise covariances to give the measurements from each sensor the

same dimensionality. For example, if a radar produces range and bearing measurements

and an optical sensor produces only bearing measurements, the measurements from both

sensors can be combined by creating a dummy optical range measurement. The value

of this dummy range measurement is typically equal to the predicted range, producing

a measurement error of zero. The noise covariance of the dummy measurement is made

much larger than the covariance of the radar range measurement, indicating very little

confidence in the dummy measurement. The contribution of each measurement to the

compressed measurement is inversely proportional to its (normalised) noise covariance,

therefore the contribution of the dummy optical range measurement will be insignificant.

It is measurement level fusion that is addressed in the work covered by this thesis.

2.L.3 Dissimilar Sensors

Dissimilar sensors may differ in the types of measurements that they provide, €.8., â radar

may provide bearing and range measurements and an infrared (IR) sensor may provide

bearing and elevation measurements. Generally they also differ in the assumed noise

models, e.g., the IR sensor has a much greater angular resolution than the radar and

hence a potentially lower measurement noise covariance.

Haimovich, Yosko, Greenberg, Parisi and Becker (1993) considered the problem of

fusing dissimilar sensors, i.e., radar and IR. They found that as the difference in sensor

accuracy increased, the fused system approached the single sensor operation of the more

accurate sensor. Consequently the benefit gained by fusing at the measurement level over

fusing at the track level decreased.

They also considered the problem of tracking clusters of targets, where only one of

two sensors is able to resolve the individual targets within the cluster. They suggest

correlating all high resolution tracks within a gate to the low resolution track, using the

resulting centroid as the (single) fused track. Alternatively, each target within the cluster

may be individually tracked, with the low resolution track contributing to each.

Measurements from different sensors may be offset from one another when targets

are at close range and occupy a significant portion of the sensors' fields of view. For

example, radars provide measurements of the centre of reflection which is extremely aspect

dependent and may not always be on the target. However, imaging sensors provide centre

of mass measurements based on the centroid of the target (Romine, Kamen and Sastry

1994). Therefore, although the same range may be assumed, angular measurements from

a radar and imaging sensor may differ even though they correspond to the same target.

Fusion can be advantageous in this situation, particularly as the radar's angular offsets

become observable, and may be estimated, when the the imaging sensor is included.
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2.L.4 Asynchronous Sensor Fusion

Most theoretical sensor fusion work has centred on combining simultaneous measurements

from multiple sensors. However different types of sensors have different measurement up
date rates, €.g., IR sensors may have measurement rates that are an order of magnitude

greater than those of radars. Therefore simultaneous measurements are unlikely if dis-

similar sensors are used.

Blair, Rice, Alouani and Xia (1991) fused the measurements from both a radar and

an optical sensor. The optical sensor's measurement update rate was much higher than

the radar's. The radar was capable of tracking multiple targets and therefore did not

always provide periodic measurements. Using a sub-optimal approach, they combined a

block of optical measurements into a single optical do,tum that was used to update the

tracking filter. If a radar meariurement was available, it was fused with the optical datum

before updating the tracking filter. The combination of measurements was based on a

weighted sum, where the weight for each measurement was inversely proportional to the

covariance of that measurement. It \Mas necessary to compress the optical data to reduce

the computational load because of the optical sensor's high measurement update rate.

2.2 Data Association

Data association is any process used to determine which measurements to use for tracking

a particular target. It is the most difficult problem in sensor fusion, and it is critical to the

success of any tracking application. The problem is not unique to sensor fusion; it is also

important for tracking in the presence of clutter and countermeasures, and in multi-target

tracking in general. In fact, the sensor fusion problem is really only a further complication

in these other applications.

Many techniques have been used with varying degrees of success. Usually a particular

technique is successful under certain conditions but is out performed by other methods

when the conditions change. Often such a technique is designed for a specific application,

e.g., tracking a single target in clutter or tracking multiple targets in a dense environment.

Methods for associating measurements in both single and multi-target environments are

investigated in this section.

Many of the approaches listed below incorporate track estimation with the data asso-

ciation, often iterating between the two in an attempt to obtain an appropriate solution.

The list below is by no means exhaustive, but it does represent a reasonable cross-section

of the available techniques.

2.2.L Nearest Neighbour Data Association

The nearest neighbozr algorithm (Bar-Shalom and Fortmann 1988, section 6.2) is the

simplest form of data association. The measurement that is closest in some sense to
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the predicted state of a particular target is used by the tracking filter to estimate that
target's state. A distance metric is usually chosen to determine which measurement is

closest. Gating, where only those mea,surements within a ualidation regionl about the
predicted location of the target are considered, may be used to restrict the problem to
those measurements in the immediate vicinity of the target. This allows for the occurrence

of missed detections, i.e., no measurements from the target at that time.

No provision is included for incorrect measurement assignments in the filtered error
covariance, therefore track loss is likely to occur.

2.2.2 Optimal Bayesian Approach

The optimal Bayesian approach associates complete sequences of measurements, up to the
current time, to a single target track (Bar-Shalom and Fortmann 1988, section 6.5). The
probability of each possible measurement sequence is calculated, and each measurement

within a sequence is weighted by the probability for that sequence. At each measurement
time, a combined measurement is produced by summing and normalising each weighted
measurement at that time, and this combined measurement is used by a Kalman filter to
produce a state estimate for the target at that time. This concept may be extended to
multiple targets, where the probabilities of groups containing one or more non-overlapping
sequences of measurements are considered.

This algorithm grows exponentially over time, making it infeasible, in practice, for any
reasonable length batch of measurements. Therefore sub-optimal algorithms of reduced
complexity must be considered. Usually these algorithms only operate on the latest N
measurement times (l/-scan back), where track histories that are identical during this
time are merged.

2.2.3 Probabilistic Data Association

Probabilistic data association (PDA) is a sub-optimal Bayesian approach that considers
only the uali,dated n"¿easuren'ùentsz in the current measurement scan, i.e., only the mea-
surements occurring at the current time (a l-scan back algorithm). The measurement
to target association probability, i.e., the probability that each single measurement (and
not the complete measurement sequence, as in the optimal approach) originates from the
target of interest, is calculated for each measurement (Bar-Shalom and Fortmann 1988,

section 6.4). These probabilities form the basis for the probabilistic d,ata associati,on f,I-
úer (PDAF). This tracking filter tracks a single target in the presence of false alarms or
clutter and, in simple terms, is a Kalman filter that uses a combined measurement (or

rA validation region is a region in the immediate vicinity of the predicted target position that is
defined by some relevant criteria, e.g., elliptical or elliptical with missing or illegal srìt-regions.

2Those measurements within the validation region.
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measurement innovation). This combined measurement is a weighted sum of the validated

measurements, where each weight is the appropriate measurement to target association

probability. These probabilities may be based on either a parametric (Poisson) or a non-

parametric (ditruse prior distribution) model of the clutter.

The interacting multiple model PDAF (Bar-Shalom 1990, Dufour and Mariton 1991a,

Dufour and Mariton 1991b) combines the Probabilistic Datø Association (PDA) and In-
teracting Multi,ple Model (IMM) tracking filters for fusing measurements from multiple
passive sensors. The IMM filter contains a number of target models, each representing

different dynamic scenarios, e.g., constant velocity, a slow clockwise turn, etc. Each model

has a probability that is continually updated using Markovian a priori transition proba-

bilities. The new state estimate for each model, and its covariance, are formed using the

state estimates and covariances from all models, hence the term interacting multiple mod-

els. The association is performed by the PDA that combines all validated measurements

within a scan according to their measurement to target probabilities.

The problems of track creation, confirmation and termination have been addressed by

Musicki and Evans (1992). They treated track existence as an event with a probability

that can be calculated. Their Integrated PDAF (IPDAF) uses this additional information
when determining the association probabilities. These probabilities are applied to a PDAF
in the same way as the standard PDAF.

Houles and Bar-Shalom (1939) have developed a multi-sensor PDAF (MSPDAF) al-

gorithm using a non-parametric PDA. Simultaneous measurements from the sensors are

applied to the filter sequentially, i.e., the measurements from one sensor are used to correct

the predicted target state, and this new state estimate is used as the predicted measure-

ment for the next sensor's measurements. Pulford and Evans (1996) have also developed

a multi-sensor PDAF for tracking a single target in clutter using measurements from more

than one sensor.

The PDAF state estimate error covariance contains a term representing the square of
the innovations. This component grov/s during manoeuvres and may be used to determine

when more information, or additional measurements, would be beneficial. Using non-

uniform sampling, more measurements may be obtained during manoeuvres, and the

me&surement rate can be reduced during periods of constant velocity when the target
behaviour is predictable (Ahmeda, Harrison and Woolfson 1996).

2.2.4 Joint Probabilistic Data Association

When multiple targets are sufficiently separated so that their validation regions or gates

do not overlap, a separate PDAF may be used to track each target. However, if any of
the targets have overlapping validation gates, then these targets may be tracked using

the joint probabilistic data association filter (JPDAF) (Bar-Shalom and Fortmann 1988,

section 9.3). The JPDAF is a generalisation of the PDAF for multiple targets, and differs
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from the PDAF in the way that the association weights are determined. In the JPDAF,

these probabilities are calculated jointly across the targets using the whole surveillance

region, i.e., no gating. To reduce the computational complexity, validation gates are used

to select only the feasible joint events; the low probability events are ignored. As in the

PDA, both parametric and non-parametric versions of the algorithm exist.

As the number of targets increases, the JPDA becomes computationally expensive. To

avoid this problem, the cheap JPDA (Bar-shalom 1990, section 1.2.1) has been developed.

It involves using a simple ad hoc formula to approximate the association probabilities. In

another attempt to reduce complexity,Zhol and Bose (1995) efficiently compute the ø

posteriori probabilities of the measurement origins by decomposing the process into two

parts, one of which is trivial.

The concept of a N-scan back JPDA, algorithm has been introduced by Korona and

Kokar (1995). This computationally expensive algorithm uses the last N measurement

scans, instead of just the most recent. Using a sliding window of N scans, it is a combi-

nation of the multiple hypothesis tracking (section 2.2.6) and JPDA algorithms.

Bar-Shalom, Chang and Blom (Bar-Shalom 1992, chapter 4) use an interacting mul-

tiple model JPDA algorithm to track splitting targets in cluttered environments. The

interacting multiple models provide the mechanism for tracking the manoeuvres of air-

craft as they break formation, or tracking missiles as they are launched from an airborne

platform.

2.2.5 The Tlack Splitting Filter

The optimal Bayesian approach (section 2.2.2) considered the whole batch of measure-

ments up to the current time, partitioning it into likely sequences representing target

tracks. An alternative is to generate the possible measurement sequences by splitting

each existing sequence at each measurement scan into new sequences, one for each mea-

surement in the scan, i.e., each new sequence consists of the existing sequence and a single

measurement from the current scan. The probability that each hypothesised measurement

sequence represents an actual target track is calculated and, in practice, this may be used

to determine the most likely target tracks.

One such approach is the track splitting filter where, at each measurement time, each

track is split into separate hypothesis tracks, one for each measurement in the valida-

tion region centred on the predicted measurement location (Bar-Shalom and Fortmann

1988, section 6.3). Each of these hypothesis tracks are then propagated forward, a nev¡

validation region is established, and the process is repeated. As each track is considered

individually, a single measurement may be assigned to more than one track.

To overcome the exponential growth of this algorithm, low probability tracks are

removed, and a sliding window is often used to prevent old measurements dominating the

hypothesised track probabilities.
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2.2.6
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Multiple Hypothesis Tracking

The track splitting filter considers the probability that a measurement is assigned to a
particular existing track, i.e., it is track oriented. Multiple hypothesis tracking (MHT)

is measurement oriented, i.e., it evaluates the probability that an existing or nerv target
produced the measurement. Therefore each measurement is seen as a false alarm or

a potential candidate for updating any existing track or initiating a new track. Every

possible combination of measurement to target assignment is considered (Reid 1979, Bar-

Shalom 1990), and each such combination is hypothesised as a potential partition of the

measurements into target tracks. This method is suited to both single and multiple target
tracking.

The probability of each track is calculated, and hypothesised tracks with low prob-

abilities are pruned to control the exponential growth in complexity. The complexity
may also be reduced by employing a N-scan back approach, where only the N most re-

cent measurement scans are considered. Hypotheses that have the same measurement to
target associations during this period are combined. Similar hypotheses that have the

same number of targets and similar state estimates may also be combined to reduce the

complexity.

The MHT algorithm has been used for tracking single targets, or well separated mul-
tiple targets, in clutter using a phased array radar (van Keuk 1gg5).

Werthmann (1992) uses three concentric gates, centred on the predicted state of each

hypothesised track, to restrict the choice of hypotheses and therefore reduce the complex-
ity. The available choices vary depending upon where within the gates a measurement

falls. For example, a measurement appearing inside the inner most gate is always assigned

to that track, and measurements outside all the gates are assumed to be a nerry track. In
other cases, various combinations of options are available, including initiate a ne\4/ track,
update the existing track or do not update the track. Even with this limited choice of
hypotheses, track pruning is still required.

2.2.7 Maximum Likelihood

The combined data association and track estimation problem can be viewed as an in-
complete data problem. To solve this problem, a complete set of measurements and

measurement to target assignments is required. However the measurement to target as-

signments are missing, and the incomplete data set, containing just the measurements, is
all that is available.

An unknown set of parameters defining the probability density function of the complete
data is obtained by maximising the joint probability (likelihood) of the measurements

and measurement to target assignments over all measurement scans with respect to these
parameters. Using the estimated parameter set, the target states and measurement to
target assignments are estimated by finding the values with largest a posteriori probability
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(Avitzour 1992).

Gauvrit, Jauffret and le Cadre (1997) formulated the multi-target tracking problem

as one of incomplete data and used the Expectation-Maximisation (EM) algorithm to

obtain maximum likelihood estimates. The target states are assumed to be deterministic,

i.e., they are not treated as random variables, so if the state is known at one time, it
can be determined at all other times by using the (noiseless) dynamic model. Therefore

the target state needs only be estimated at one (convenient) time. Modelling the target

states as random variables with ¿ priori distributions and using the same incomplete data

formulation with the EM algorithm, they also developed a maximum a posteriort (MAP)

algorithm that they recognised as being equivalent to the probabilistic multi-hypothesis

tracking algorithm of Streit and Luginbuhl (1993).

2.2.8 Probabitistic Multi-Hypothesis Tracking (PMHT)

As described in the previous section, the probabilistic multi-hypothesis tracking (PMHT)

algorithm formulates the data association and tracking problem as an incomplete data

problem and solves it using the EM algorithm. Using soft or probabilistic measurement

to target assignments, each measurement is partially assigned to each of a fixed number

of targets (Streit and Luginbuhl 1993, Streit and Luginbuhl 1994, Streit and Luginbuhl

1ee5).

The concept of gating may be applied to the PMHT by using submodels with different

measurement noise covariances in the measurement model of each target (Rago, Willett

and Streit 1995a). Also false alarms may be handled by a similar method, where each

target has a second model using the same dynamics but a measurement model with mea-

surement noise covariance equal to that of the innovation at that time (Rago, Willett and

Streit 1995b). This second model is ignored when estimating the target states, effectively

removing the effect of some measurements from the problem. Theoretical comparisons

have been made with the JPDA (Streit and Luginbuhl 1995) and the comparative per-

formance of the PMHT and JPDA has been analysed (Rago et al. 1995a, Rago et al.

1ee5b).

The PMHT uses pointers to assign each measurement in each scan to a target. An

alternative approach is to use pointers to assign each target to a measurement, with the

possibility of empty pointers for missed detections (Rago, Willett and Streit 1995c). All

measurements that have no targets assigned to them are assumed to be false alarms,ê.8.,

clutter.

The PMHT assumes each measurement belongs to exactly one target, but each target

may produce multiple measurements at any time. Therefore it lends itself naturally to

sensor fusion (Rago et al. 1995b). Dunham and Hutchins (1997) have evaluated the

performance of the PMHT in the presence of significant clutter.
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The general assignment problem is one of matching n people to m objects. In a data

association and tracking context, this is a problem of matching measurements to target

tracks or, conversely, matching target tracks to measurements. For explanation purposes,

the problem of matching measurements to target tracks will be used here, unless otherwise

stated.

There is a benefit associated with matching a particular measurement to a specific

target track, and the aim is to select the set of measurement to target assignments that
maximise the total benefit over the whole set of assignments. In tracking applications,

the benefit may be the probability of a measurement originating from a specific target, or

the penalty (to be minimised to obtain the maximum benefit) *uy be the error between

a measurement and a target track. This maximisation (or minimisation for penalties) is

usually subject to some constraints, such as each measurement being assigned to exactly

one target or limiting the choice of measurements that may be associated to a particular

target track, e.g., validated measurements. A feasible solution is a set of measurement to
target assignments that satisfy the constraints, and the optimal solution is the feasible

solution that provides the highest overall benefit.

Assignment algorithms belong to the broader class of minimum cost flow problems

that, in addition to the assignment problem, includes transport and maximum flow prob-

lems. These problems may be solved using methods incorporating one or more of the

three basic algorithmic ideas, namely primal cost improvement, dual cost improvement

and auction (Bertsekas 1991).

2.2.9.1 Primal Cost Improvement

Consider a hypothetical measurement scan containing ll measurements that are to be as-

signed to .lú target tracks, such that each measurement is assigned to a single target and

no two or more measurements are assigned to the same target. Each measurement to tar-
get assignment has a cost or penalty associated with it, and the primal cost improvement
problem becomes

NN
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where a¿¡ represents the cost (penalty) associated with assigning measurement i to target

track j and X: {roj: i:I,2,...,N,i : I,2,...,N} denotes the assignment variable

for measurement i and target track j. ø¿r. has a value of 1 or 0, depending on whether

measurement i is assigned to target track j or not.

These algorithms commence with a feasible complete set of assignments, and then the

benefit or cost is improved iteratively by swapping assignments to obtain another feasible

solution with a greater benefit. The algorithm terminates when the optimal or ma:cimum

benefit is achieved, i.e., maximum benefit or minimum penalty.

2.2.9.2 Dual Cost Improvement

Using linear programming theory, a problem can be replaced by its dual that operates

on prices instead of assignments. There is a price for each measurement if the number of

target tracks to which the measurement may be assigned is constrained, and a price for

each target track if the number of measurements that may be assigned to it is limited. A

measurement price represents the benefit obtained by not assigning that measurement to

any target tracks, i.e., it is a false alarm, and a target track price represents the benefit

obtained by assigning a measurement to that target track, i.e., a detection exists from

that target. In linear programming, the prices are known as Lagrange multipliers, and

they incorporate the original constraints on the assignments into the dual cost function,

i.e., the prices â,re unconstrained, with the original assignment constraints now part of

the cost function.

The dual cost problem may be given as

(N /v N N_ ì

"Ï"tÐÐ*f {@¿¡+P¡-p¿)x¿ilr¿¡ € {0,1}} +Dnt-D,=,ot} (2'3)

where p:lp¿,p¡:i,j:L,2,...,N] is the price vector. The term a¡jiPj -p¿ in (2.3)

represents the profit obtained by assigning the meâsurement i to the target track j, i.e.,

it is the benefit of assigning the measurement to the target track j plus the benefit

of assigning a measurement to the target track, Iess the benefit of not assigning the

measurement to any target track. The aim is to maximise the profits while minimising

the dual cost.

The dual cost improvement algorithms commence with a complete set of prices, and

attempt to iteratively obtain new prices that improve the dual cost. The price changes at

each iteration occur along a particular direction, the steepest in primal-dual algorithms

and along a direction with a small number of non-zero elements in relaxation ot coor-

d,inate ascent algorithms. If the problem is feasible, the algorithm terminates when the

assignments, that are related to the prices, become feasible. At this point, the solution is

optimal, and the primal and dual costs are equal, i.e., if the primal cost function increases,

the corresponding dual cost function will decrease, until eventually both are equal.
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2.2.9.3 Auction

Auction algorithms (Bertsekas 1981) reach the optimal solution without necessarily im-
proving the primal and dual costs at each iteration. They commence with a possibly

empty partial assignment set, and at each iteration an unassigned measurement is se-

lected and assigned to the target track that provides the maximum benefit. If that target
track already has another measurement assigned to it, that measurement is removed from
the partial assignment. At each iteration, a feasible partial assignment is produced, and
the algorithm terminates when all the measurements have been assigned to a target track.
The price (see section 2.2.9.2) of the target track to which the measurement has just been

assigned is increased by the difference between the benefit of assigning the measurement

to it and the benefit of assigning the measurement to next best choice of target track.

A problem with the auction algorithm is that it may cycle between two or more partial
assignments and never terminate, i.e., the optimal solution is never reached. To overcome

this, the price of each newly assigned target track is increased by the difference between

the benefits of assigning the measurement to the best two target tracks plus a small
positive increment e. This ensures that the prices of continually reassigned target tracks
increase until some other target track, with a lower price, is assigned to the measurement.
Therefore the algorithm must always terminate because eventually all target tracks (and
measurements) will be assigned.

In the reuerse o,uction algorithm (Bertsekas, Castanon and Tsaknakis 19g3), target
tracks compete for measurements by either lowering their prices or increasing the profit
of the measurement. Combining the forward and reverse auction algorithms produces
the combined forward and reuerse auction algorithm in which both the prices and prof-
its are updated at every iteration. The algorithm commences with several iterations of
the forward auction, and then it switches to the reverse auction for several iterations.
This process continues until all the target tracks are assigned and the optimal solution
is reached. However, as profits increase, prices decrease (and vice versa), and the algo-
rithm may never terminate. To overcome this potential problem, the number of assigned
measurement/target pairs must increase before the algorithms are switched.

When there are more measurements than target tracks (or vice versa), two approaches
are possible (Bertsekas et al. 1993). In the asymmetric assi,gnment problem, measurements
are left unassigned (Castanon 1992), e.g., false alarms, and in lhe multi-assignment prob-
lem, multiple measurements may be assigned to a single target track. Both problems
are solved by initially running the forward auction algorithm until all the target tracks
have exactly one measurement assigned to them. Then, for the asymmetric assignment
problem, the reverse auction is run until the price of every unassigned measurement is
less than or equal to the price of every assigned measurement. In the multi-assignment
problem, the reverse auction is run until all the measurements are assigned. If an unas-
signed measurement is assigned to a target track, the measurement previously assigned
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to that target track is not removed if the target track's profit has reached a maximum

limit (equal to the highest profit at the commencement of the reverse auction).

The Jonker-Volgenant-Castanon (JVC) algorithm was originally developed for spz,rse

cost matrices. This algorithm consists of two phases, an auction algorithm phase followed

by a modifred Munkres algorithm (Munkres 1957), utilising the rapid initial convergence

of the auction algorithm and the fast convergence of the Munkres algorithm in the final

stages (Malkoff 1997).

2.2.9.4 Relocation Algorithms

Algorithms, such as the auction, are able to solve the 2-D assignment problem in polyno-

mial time. However, the 3-D and higher dimension assignment problems have exponential

complexity. The general K-D assignment problem may be solved by relaxing one of the

K constraints and incorporating it into the cost function using Lagrange multipliers.

The problem then becomes one of solving the dual (K - 1)-D assignment problem (Deb,

Mallubhatla, Pattipati and Bar-Shalom 1990, Pattipati, Deb, Bar-Shalom and Washburn

1992, Deb, Pattipati and Bar-Shalom 1993, Poore and Rijavec 1991, Poore and Rijavec

1993). If the solution of the (/( - 1)-D dual problem is known, a solution for the primal

K-D problem can be obtained, where the difference between the primal and dual cost,

known as the duality gap, provldes an indication of how close the solution is to optimal

(if the solutions are equal, they are optimal). If the duality gap is too large (typically

greater than 1%), the process is repeated using the Lagrange multipliers obtained from

the previous iteration. This process may be recursively applied until the 3-D problem is

reached. Then the 2-D dual problem may be solved by an algorithm such as the auction to

obtain a solution to the 3-D problem (iterating until the duality gap is acceptable). Then

each successively higher dimension problem is solved, until the solution to the original

problem is obtained.

An alternative approach is to successively relax all but two of the constraints, putting

each relaxed constraint into the objective function using Lagrange multipliers (Deb, Yed-

danapudi, Pattipati and Bar-Shalom 1997, Poore, Robertson III and Shea 1995). The

resulting 2-D problem is solved optimally, using the auction or similar algorithm, and

then each of the relaxed constraints are enforced sequentially to obtain a feasible solu-

tion. If the duality gap is too large, the whole process is repeated, using the Lagrange

multipliers from the previous iteration.

2.2.LO Other Approaches

Various other approaches to data association have been attempted, some of which are

listed below.

Neural networks have been used to associate and fuse tracks from different sensors, €.g.,
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fusing two radar tracks (Filippidis and Bogner 1992), and to associate individual

meâsurements to target tracks (Wang, Litva, Lo and Bosse 1996).

Hidden Markov models and dynamic programming have been used extensively for

frequency line tracking. This requires a discrete state space, and therefore it does

not lend itself readily to target tracking in general. However, Martinerie and Forster

(1992) have used this technique to track targets using measurements from three

sensors that measure either range, or range and range rate.

Clustering techniques group measurements into clusters, and the centres of these clus-

ters become pseudo mear¡urements that are assigned to target tracks (Thompson,

Parra-Loera and Tao 1991).

Fuzzy logic that compares measurements and targets is used to replace the correction

phase of the Kalman filter (i.e., fuzzy return processor) (Horton and Jones 1995).

This approach may be useful for tracking in cutter.
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Asynchronous Rrsed Kalman Filter

\Mhen tracking targets in real environments using measurements from multiple sensors,

i.e., measurement level fusion (section 2.1.2), it is unlikely that the measurements will

arrive simultaneously from each sensor. Each sensor in the system will probably have

a different nleasuren'tent rate with little or no synchronisation between sensors. Missed

detections, caused by faint fluctuating targets or deliberate emission control, may cause

further complications. Therefore the system's measurement rate is unlikely to be constant,

and the number of measurements occurring simultaneously will vary over time. I will refer

to sensor fusion under these conditions as asynchronous sensor fusion or, more simply, as

asynchronous fusion.

3.1 Kalman Filter

The Kalman filter (Bar-Shalom and Fortmann 19SS) is a state space algorithm for esti-

mating the track history of a target from all past and current measurements. It uses a

process model to describe the expected dynamics of the target, particularly between mea-

surements when no other information is available. In tracking applications, the process

model is also known as the dynarnic model.

Assuming linear dynamics, the state of the target at time ú¿.u1 ma/ be modelled by

X¿¡+, : Frrx¿, f w¿¡ (3.1)

where, at time ti, xt, is the target state and F¿, is the state transi,tion matriøl describing the

target dynamics from time t¿ to t¿¡1. The transition matrix represents a stationary process

because it is dependent on the time difference between ú¿ and ú¿-.1, not on the absolute

time. w¿, is a zero mean uncorrelated GaussiarL process noise with known covariance Q¿,.2

This process noise models the deviations of the target from its expected dynamics, e.g.,

lThe state transition matrix, as it depends only on time difference, should strictly be denoted Fr,+,-¿,

2As for F¿,, Qt, is dependent only on time difference and should strictly be denoted Qr¡11-r¡.
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manoeuvres. The discrete state process noise is sometimes represented by Gr,iûr, where

vû¿, is a vector whose elements contain the continuous time process noise for each positional

coordinate. The discrete time process noise is obtained by integrating the continuous time

noise over the time interval t¿tot¿¡¡, a process represented by the matrix G¿,. Therefore

the process noise covariance may be expressed ¿s Qt, : G¿,QG[, where Q = g [*r,*I]
and is assumed to be time invariant. The notation Qt, has been adopted for clarity. The

time sequence, [ú1,t2,ts,...]where t¡2 t¡ for i > j, represents the measurement times.

The time ú¡ denotes a time, prior to any measurements, at which the target's initial state

may be defined.

At each measurement time t¡, ã, rneasurement model is defined as

Z¿r: H¿rXt¡ * \/¿ (3.2)

where z¿, is the measurement vector, H¿, is the rneasurement matrix and v¿, is a zero

mean uncorrelated Gaussian n'tel,surement noise with covariance R¿,. The measurement

matrix represents the relationship between the measurement and the target state. The

measurement noise includes sensor, target and environmental noise, and any mismatch

between the measurement model and the real situation. The measurement noise and

process noise are assumed to be independent.

zti

x¿¡-rlt¡-r *r,lt,-, *r,lr,

Figure 3.1: Kalman filter functional diagram3

The filter estimates the target state at each measurement time using the current and

all previous measurements. The state estimate at time ú¿, given all measurements up to
and including time ú¡, is denoted *¿,¡¿,, and it is obtained using the two step process sho'wn

in figure 3.1. The first step is prediction, where the previous state estimate *¿,_,¡¿,_, and

the process model are used to predict a ne\¡/ state estimate *¿,¡¿,_, for the target at time
ú¿. This nerv estimate is conditional only on past measurements, i.e., it is the estimate at

sStrictly speaking, Qr,-, is not used to update the predicted state estimates, but to update the
predicted state error covariance. This covariance is used to determine the Kalma¡r gain K¿, that is used
to obtain the corrected state estimates.

Process Model
Fr¡_1,QÍ¡_1

H , Rt,
Model K¿i

PREDICTION STEP

CORRECTION STEP

2-r
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time ú¿ given the measurements up to and including time ú¿-1, and is determined, along

with its error covariance Pr,lr,-r, from

*r,lr,-, : F¿¡-r*¿¡-r l¿¡-,

Pr,lr,-r : F¿¡-r P¿,-rl¿,-, F[-, + Q4-t
(3.3)

where r denotes the matrix (and vector) transpose. The second step is correction, where

the measurement received at time t¿ is used to correct the predicted state estimate *r,lr,-r.

The corrected estimate *¿,¡¿, and its covariance P¿,¡¿, are obtained from

Kt¡: Pr,lr,-rHI (nr,Pr,lr,-rnI + Rr,)-t

*r,l¿, : *r,lr,-, * Kti (rr, - H¿r*¿,¡tr-r) (3.4)

Pr,l¿, : (1 - Kr,Hr,) P¿,1¿,-,

where K¿, is referred to as the Kalman gain. The resulting state estimate error, i.e.,

the difference between the estimate and the true state, is assumed to be independent

of the process noise and the measurement noise. Note that the contribution of all past

measurements is contained in the previous state estimate *¿,-, ¡¿,-r, ârd is therefore present

in the predicted state estimate (3.3).

Many sensors provide measurements at regular time intervals, and in these cases the

Kalman filter operates with a fixed mea,surement rate. This usually results in time in-

variant dynamic and measurement models for linear systems. However, when the time

difference between successive measurements varies, the dynamic and measurement models

are no longer time invariant, and the filter is referred to as a uariable update rate Kalman

fiIter. Jazwinski (1970) gives a detailed description and derivation of both the fixed and

variable rate Kalman filters.

3.2 Asynchronous Fused Kalman Filter

The asynchronous fused Kalman f,lter (AFKF) is a Kalman filter that estimates a target's

track history using measurements from multiple, and possibly dissimilar, sensors (see

measurement level fusion, section 2.1.2). A single state space dynamic model is used to

model the dynamics of the target of interest and, because the sensors are likely to have

different measurement rates, a variable update rate Kalman filter is used to estimate the

target states.

Consider a two sensor system in which the measurement rates of each sensor are

different. At any measurement time, it is possible to have a single measurement from either

of the two sensors, or two simultaneous measurements, one from each sensor. Therefore

the measurement model (3.2) at any time will depend on which of the above conditions
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occur at that time, i.e.,
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zuj

,Íi) : HÍl) *,,* 
"jl)

,Í?) : HÍ:) *,,* ,Í:,

RÍ])

RÍ:)

RÍI) O

o RÍ:)

single measurement from sensor 1

single measurement from sensor 2
(3.5)

simultaneous measurements

where, at time to, uÍ! denotes the measurement from sensor s, ttji) the measurement

matrix for sensor s and *'j:) ttr. measurement noise from sensor s.

The measurement noise covariance will also depend on the origin and number of mea-

surements, and it is denoted

pr, 
=

single measurement from sensor 1

single measurement from sensor 2

simultaneous measurements

(3.6)

where nfi) aenotes the measurement noise covariance for sensor s at time ú¿ and 0 is a
zero matrix of the appropriate dimensions. Alternativel¡ the simultaneous measurements

may be processed sequentially using a"zero time difference between the two measurements,

i.e., the target's dynamic state does not change between simultaneous measurements.

This alternative technique is particularly attractive when the occurrence of simultaneous
measurements is rare.

This formulation assumes that the measurement noise is uncorrelated between sensors

and, in theory, may be extended to any number of sensors.

3.3 Algorithm Evaluation

The AFKF is initially evaluated using simulated data to analyse its tracking behaviour
with measurements from two sensors. The AFKF's process and measurement models are

matched to the data; the problem of model mismatch is addressed in chapter 4. Finally,
the operation of the AFKF is observed using real data collected from a radar and optical
tracking system.

When comparing the AFKF to a single sensor Kalman filter, the term original sensor
is reserved for the sensor that is present in both the AFKF and the single sensor Kalman
filter. Additional sensors are those occurring only in the AFKF.
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3.3.1 Performance Indicators

The performance of the Kalman filter and AFKF can be quantified by the estimated

state error covariance or traclc error couariance (TEC), i.e., the lower the TEC, the better

the tracking performance. To compare the performance of the AFKF over the single

sensor Kalman filter, the concept of a fusion gain is introduced. This value, denoted

as FG, is defined as the ratio of TEC of a single sensor tracking filter to the TEC of a

multiple sensor tracking filter (in this case the AFKF). Therefore the FG is proportional

to the tracking performance of the AFKF relative to the single sensor Kalman filter's

performance. Values of FG greater than unity imply better performance from the multi-

sensor tracker, values less than unity indicate that the performance of the single sensor

tracker is better. In these simulations, the FG is used to compare a dual sensor AFKF to

a single sensor Kalman filter.

3.3.2 Simulated Data

The evaluation using simulated data was carried out with artificial mea^surements of one

dimension. Calculated results in this section were taken when the AFKF had reached

its steady state operation, i.e., after the filter gains had stabilised to their steady state

values. Estimated results where taken as the average over 900 measurement times during

steady state operation for 100 different data ensembles.

The simulated data was produced by first generating a random target trajectory using

Gaussian process noise to determine the target's manoeuvres. Gaussian measurement

noise was then added to the target trajectory to simulate the measurements from each

sensor. Figure 3.2 shows the target positions for two example trajectories generated with

different values of process noise covariance.

The AFKF was implemented using (e.S) and (3.4), and the multiple sensor measure-
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Figure 3.2: Examples of simulated target trajectories
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ment model in (3.5) and (3.6). A second order dynamic model, i.e., a constant velocity

model, was used, with the transition and process noise covariance matrices given as

F

(3.7)

q2

where T : T(t¿¡t,t¿) : t¿+t - ú¿ is the update interval between times ú¿ and t¡+t. Q2 is the

covariance of the continuous time process noise representing random accelerations, i.e.,

the maximum change in velocity during one update interval is of the order of 1@. ttte
measurement matrices for the one dimensional position measurements from each sensor

are given as

1]
T'2
2

T

h:þ

frs_ lT
- lrz

Lz

t;

Qr,

H I
t; 10 s:1,2 (3.8)

Unless stated otherwise, simultaneous measurements from each sensor are assumed.

3.3.2.1 Variations in Process Noise

Simultaneous measurements at one second intervals with unity measurement noise covari-

ance \4¡ere generated for each sensor. These measurements were processed by the AFKF
for values ofprocess noise covariance from 0.01 to 100. The track error covariances derived

from (3.3) and (3.4) for the single sensor Kalman filter and the dual sensor AFKF are

shown in figure 3.3(a). The estimated values obtained from the simulations are indicated
by *'s.

As the process noise covariance increases, the track error covariance approaches unity
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Figure 3.3: AFKF performance over a range of process noise covariances
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for the single sensor and 0.5 for the AFKF. These values correspond to the noise covariance

of a single sensor measurement and the combined dual sensor measurement respectively.

This behaviour is expected, because the filter increases the contribution of the measure-

ments as the uncertainty in the process model increases. As the process noise covariance

decreases, the track error covariance also decreases, as does the fusion gain (figure 3.3(b)).

This reduction in track error covariance is caused by the process model starting to domi-

nate the filter as its uncertainty decreases relative to the measurement noise. The process

model is common to both the single sensor Kalman filter and the AFKF, so the behaviours

of both become similar as the influence of the measurements is reduced. Note however

that there is still a significant fusion gain of 1.75 when the process noise covariance is

0.01, i.e., one hundredth of the measurement noise covariance.

3.3.2.2 Variations in the Measurement Noise of the Additional Sensor

Using a measurement update interval of one second, and setting the process noise covari-

ance and the measurement noise covariance of the original sensor to unity, the behaviour

of the AFKF was evaluated with different values of measurement noise covariance for the

additional sensor. The track error covariance (TEC) and FG are shown in figure 3.4.

The results show that as the measurement noise covariance of the additional sensor in-

creases, its effect on the AFKF reduces and the operation of the AFKF approximates that
of the single sensor Kalman filter, as indicated by the FG approaching unity. However,

as its measurement noise covariance decreases, the additional sensor begins to dominate

the behaviour of the AFKF, causing it to behave as a single sensor Kalman filter with a
much lower measurement noise covariance than that of the actual single sensor Kalman

filter. Therefore the AFKF's TEC decreases, causing a corresponding rise in the FG.
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Figure 3.4: AFKF performance over a range of additional sensor measurement noise
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Figure 3.5: AFKF performance over a range of update intervals

3.3.2.3 Variations in Measurement Update Rate

These simulations \¡¡ere performed with unity process noise covâriance and measurement

noise covariances. The performance of the AFKF for different measurement update times,

i.e., different time intervals between measurements, is illustrated in figure 3.5.

The results obtained show similar trends to those for variations in process noise. This
is because as the time between measurements increases, the uncertainty in the process

model also increases. As the effective process noise has increased, the Kalman filter
weights the measurements more, resulting in an increase in FG.

3.3,2.4 Offset Measurements

The simulations so far have involved simultaneous measurements from both sensors. If
the sensors are able to be synchronised, do simultaneous measurements provide the best

tracking performance? Simulations where each measurement from sensor 2 occurs some

fraction of the update interval after the corresponding measurement from sensor 1 are

considered. The results are shov¡n in figure 3.6, where the offset denotes the fraction of
the update interval that separates the measurements from sensor 2 from the corresponding

measurements from sensor 1.

Processing each measurement sequentially in time order, the solid line in figure 3.6

represents the TEC immediately after each measurement from sensor 2 is processed. The

best tracking performance occurs when the measurements arrive simultaneously, i.e., zero

offset. The TEC rises as the offset increases because of the increased uncertainty, due to
the increased filter extrapolation time, in the predicted state estimate at the measurement
times of sensor 2. The dashed line represents the TEC obtained immediately after each

meâsurement from sensor 1 is processed. This shows a decrease in TEC as the offset

increases because, in this case, the time interval between the current measurement from
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Figure 3.6: Ttack error covariance over a range of measurement time offsets
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Figure 3.7: Timing of offset measurements from sensor 1 (S{t)¡ and sensor 2 (S(2))

sensor 1 and the previous meâsurement from sensor 2 (denoted 'A' in figure 3.7) decreases

as the offset increases.

As can be seen from figure 3.6, the combined plots are symmetrical about an offset

of 0.5 update intervals, because an offset of say 0.3 between one measurement and the

next corresponds to an offset of 0.7 between that same measurement and the previous.

Therefore, if the state estimates may be taken at the meariurement times of either sensor,

the worst case performance occurs when the measurement separation is maximum, i.e.,

half the update interval.

As the ratio of process noise covariance to measurement noise covariance decreases,

the measurements have less effect on the tracking performance, and the effect of the

measurement offset on the tracking performance becomes less pronounced.

3.3.3 Real Data

The AFKF was evaluated using real radar and optical data (Krieg and Gray 1996c). The

radar and optical sensors ïvere not synchronised and had different measurement update

rates, i.e., approximately 30 Hz and 50 Hz respectively. The radar measures target position

(in radar coordinates, i.e., azimuth, elevation and range) and Doppler velocity,a and the

+\

+

Ìr

+

aDoppler velocity is the negative of range rate, i.e., the velocity towa¡ds the sensor.
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optical system measures azimuth and elevation. Therefore the dynamics are non-linear

with complex dependencies between the positional coordinates and their derivatives. The

targets used in this evaluation were relatively benign, exhibiting only gentle manoeuvres.

Therefore a second order linear dynamic model with additional process noise to account for

the manoeuvres and non-linearities was implemented. The resulting state vector included

each positional coordinate and its first derivative, i.e.,

l, rteèR Èl
T

(3.e)

(3.10)

where 4 represents the azimuth or bearing, e the elevation and .R the range, with ä
indicating the derivative of ¿. The corresponding transition and process noise covariance

matrices were written

0

¡(t)
0

q1

p(t)

F- 0

0

q(t)

o- 0

0

0

0

¡(t)

0

I]

frs r21
o"': 

L+ r)Q(t)q,'

0

where q|, q? and qfr denote the continuous time process noise covariances for azimuth, el-

evation and range respectively. As the targets are tracked in radar coordinates, the actual

target dynamics are non-linear and the coordinates (4, e and R) are not independent. For

simplicity, linear dynamics âre assumed, and the dependencies between the coordinates

are ignored in the state transition matrix F. The errors introduced by these assumptions

are modelled by additional process noise. This, in effect, decouples the coordinates, and

therefore each may be filtered (tracked) independently of the others.

For all i, let the measuremenr vector, ,i1) : lr,1' ,Íl) nÍl) -"Jl']t uod ,l?) :

lnÍ?) ,Í:']t represent the measurements from the radar and optical sensor respectively.

Then the measurement and covariance matrices for the AFKF (see (3.5) and (3.6)) are

given as
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(3.11)
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HÍ:) = H(2) -
(3.12)

0

o (2)2

where of)' , o!')' , o$)' und,of;)' d.trote the measurement noise covariance of the azimuth,

elevation, range and Doppler velocity measurements from sensor ,e.

The single sensor Kalman filter using only radar measurements, i.e., the radar Kalman

filter, and the single sensor Kalman filter using only optical measurements, i.e., the optical

Kalman filter, use the same dynamic model as the AFKF and the appropriate measure-

ment and noise covariance matrices from (3.11) and (3.12). This section concentrates on

the angular measurements, as it is these that are common to both sensors.

3.3.3.1 DataCollection

The radar and optical data was collected using a sensor fusion testbed (appendix A)

located at an elevated site approximately 3 km from, and 140 metres above, a light aircraft

airfield situated in the northern suburbs of Adelaide, South Australia. This site also

provided a clear view of the airspace above the Adelaide International Airport, some

25 km away.

The collected data was arranged into data sets containing the radar and optical mea-

surements collected while attempting to track a single target with the radar. Many of

these data sets also include measurements from other aircraft, and radar and optical

clutter.

The measurement noise covariances for each sensor were estimated from the data, and

the values ol)' : ot')' :1mrad2, og)' :40m2, o9)' :4m2s-2 a.nd ot2)2 - o?)z -
0.1mrad2 were substituted into (3.11) and (3.12).

The true target position is required to determine the tracking errors. As ground

truth was not available, the target position was estimated by applying polynomial fitting
techniques to the data. This smoothed the measurements and removed short time constant

variations, such as those produced by air turbulence. This had the effect of artificially

increasing the measured track error covariance by an unknown amount.

During data collection, the sensor mount was controlled solely by the radar. This

provided the opportunity for the optical system to re-acquire lost tracks provided the

radar maintained track. If the radar lost track, the optical sensor eventually lost the

target also.

3.3.3.2 Clea¡ Sky Tracking

Under clear sky conditions, i.e., in the absence of significant clutter and other targets, the

AFKF and the radar and optical Kalman filters all successfully maintained track on the

0000.ì
loool

ho
Lto
loíÐ'
lo

RÍ:) = P(z) -
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TTacker Azimuth Elevation
Radar
Optical
Fused

0.083

0.037
0.037

0.18
0.083
0.072

Table 3.1: Ttack error covariance (mrad2) of a tight aircraft

T!acker Azimuth Elevation
Radar
Optical
Fused

0.082

0.053

0.050

0.050
0.019
0.017

Table 3.2: Tlack error covariance (mrad2) of a commercial aircraft

target of interest. Typical track error covariances for light and commercial aircraft are

shown in tables 3.1 and 3.2.

It is noted that these results are approximate because, as it is estimated from the data,

the actual target position is not known with any certainty. Generally this will increase

the estimated track error and give lower values of fusion gain. The assumed measurement

noise covariances that were estimated from the data are subject to change with target

type, target position and environmental factors. This may result in a mismatch between

the data and filter models, also causing an increase in track error. Therefore it is likely
that the values of FG obtained from these tables will be lower than those actually being

achieved. However these results still show an increase in performâ,nce of the AFKF over

the radar Kalman filter, and equal or better performance over the optical Kalman filter.
It appears that, for these examples, little or no benefit is gained from using the radar's

angular measurements.

The Kalman, or filter, gains provide a useful insight into the operation of the track-

ing filters. They are the weights that are applied to the measurement innovations, i.e.,

the errors between the measurements and the predicted target state, to correct the state

estimates. Figure 3.8 shows the steady state gains that are applied to the azimuth mea-

surement innovations to correct the azimuth position estimates. The gain for the radar

Kalman filter is labelled 'A', the optical Kalman filter gain is shown as 'B', and the AFKF
gains for the optical and radar mea,surements are denoted 'C' and 'D' respectively.

The radar Kalman filter gain 'A' contains a number of peaks, following missed de-

tections, where the higher gain is used to increase the influence of the measurements

when they do arrive. When detections are missed, the filter has to propagate the target

dynamics for a longer period of time, increasing the uncertainty in the state estimates.

Therefore a larger correction is required from the measurements. Conversel¡ the optical
Kalman filter gain 'B' is lower than that of the radar Kalman filter because the measure-

ment update interval of the optical sensor is less than that of the radar's. The shorter the
measurement update interval (i.e., the higher the update rate), the lower the predicted

state estimate covariance and the lower the gain.
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Figure 3.8: Kalman gains for single and fused sensor trackers

The ratio of the optical and radar gains for the AFKF, 'C' and 'D' respectively is

determined by the inverse of the sensor meâsurement noise covariances and the relative

measurement update rates. In this case, the ratio is determined predominantly by the

covariances, and the higher optical gain ensures that the lower noise optical measurements

have a greater influence on the state estimation. The overall lower gains of the AFKF
are caused by the increase in the average measurement update rate resulting from the

increased number of measurements. The AFKF gains are also influenced by the missing

radar measurements, but to a much lesser extent than for the radar Kalman filter gain

because of the presence of the optical measurements. This variation in the AFKF radar

gain is not obvious from figure 3.8 because of the small average value of this gain; the

percentage variation of the AFKF radar gain is similar to that of the AFKF optical gain.

3.3.3.3 Tracking Targets at Close Range

When a target occupies a significant region in a sensor's field of view, the sensor may not

be able to maintain a consistent reference point on the target. The position of a radar

measurement is determined by the geometry of the significant electro-magnetic reflectors

on the target, and this generally changes with target aspect. The optical tracker relies

upon image processing to locate the target's centre of mass or centroid, and this may also

change with target aspect. This problem increases with target size and decreases with
target range.

The optical sensor on the testbed had difficulty maintaining a consistent centroid

position in such scenarios, the effect of which is shown in table 3.3. The track error

covariance of the optical Kalman filter is greater than that of the radar Kalman filter.
The additional noise, caused by the uncertainty in target position, was not included in the

measurement model, therefore the optical Kalman filter assumes that the optical noise is

less than its actual value and rveights the optical measurements higher than it should. This

effectively transfers additional noise to the target track and reduces tracking performance.

37
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Tlacker Azimuth Elevation
Radar
Optical
F\rsed

0.10

0.34
0.31

0.021
0.044
0.040

Table 3.3: Ttack error covariance (mrad2) of a light aircraft at close range

The AFKF treats the optical measurements in the same way, and its performance is

degraded to such an extent that the radar Kalman filter out-performs it.

3.3.3.4 Loss of Measurements Flom One Sensor

Earlier clear sky results indicated that the radar's angular measurements added little to
tracking performance in terms of track emor covariance. However, if the optical sensor

loses track, the AFKF will continue to track using the angular measurements from the

radar, albeit with increased TEC. An example of this is illustrated in figure 3.9 where, at

'A', the target moves out of optical range and the optical measurements cease.

Tirne (s)

Figure 3.9: Azimuth tracking error increase due to loss of optical measurements

3.3.3.5 Tracking in Clutter

The elevated site provided a good opportunity to evaluate tracking performance in clutter,
as the targets were often tracked at negative elevations against an urban background. The

optical tracker had great difficulty maintaining track under these conditions, frequently
acquiring objects in the background. The radar suffered a similar fate in the presence of
large reflectors, such as industrial buildings.

Figure 3.10 shows the azimuth tracking errors obtained from a target that was tracked

in clutter. The dotted line represents the tracking errors obtained from the optical Kalman
filter, the dashed line the radar Kalman filter, and the solid line the AFKF.

Initially the clutter level was insufficient to influence the trackers. However, radar
clutter introduced at 'A' severely degraded the performance of the radar Kalman filter,
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Time (s)

Figure 3.10: Azimuth tracking errors in clutter

causing it to lose track. The AFKF was not significantly affected because the optical

measurements dominate its operation. At 'B', the optical sensor lost the target due to

clutter, and then the optical measurements ceased. The AFKF was then driven by the

radar clutter, until the optical sensor detected another object in the clutter at 'C'. The

AFKF followed this object until it was lost at 'D'. After a few spurious measurements,

the radar acquired another object in clutter at 'E', and the AFKF tracked it until it was

Iost a short time later at 'F'.
This example illustrates the importance of determining which measurements to use

for tracking a particular target. The AFKF and Kalman filter do not perform data

association, and therefore they perform very poorly in clutter.

This problem is further illustrated by a second example, for which the azimuth and

elevation tracks are shown in figure 3.11.

Radar clutter appeared at 'A' and caused the radar Kalman filter to deviate from the
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true target. The AFKF maintained track using the optical measurements until, at 'B', the
radar was completely seduced by clutter. The radar subsequently moved the mount and

the sensors away from the target until all measurements ceased at 'C'. The propagated

state estimates were influenced by spurious radar measurements at 'D', and the target
fortuitously re-entered the field of view at 'E', was re-acquired by the optical sensor and

tracked by both the AFKF and optical Kalman filter.

It was more common for the optical sensor to be effected by clutter because it is

only two-dimensional. Having no range or depth discrimination, it can receive optical
measurements from any object within its field of view and over its entire detection range.

Therefore the AFKF performed poorly in optical clutter because the optical measurements

have the greatest influence on its operation. When optical measurements were available,
radar clutter had little effect on the angular tracking performance of the AFKF.

3.3.3.6 Interfering Targets

Other targets in the optical sensor's field of view often seduced the optical sensor in the
same way as optical clutter. This is illustrated by the example elevation tracks shown in
figure 3.12 where, in each plot, the mear¡urements are shown as dots and the AFKF track
as a dashed line. The radar measurements are shown in figure 3.12(a) and the optical
measurements are shown in figure 3.12(b).

The target track commenced at 'A' and proceeded in a clockwise direction. The AFKF
was seduced from the target by optical clutter at 'B' and by other optical targets at 'C'
and 'D' (until they were lost as they left the optical field of view). After losing the target
near the top of the field of view at 'D', the optical tracker was seduced by several optical
interferences ('E') before it re-acquired the target. Normal dual sensor tracking continued
until the radar lost the target ('F'), at which point the AFKF continued to track the
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target using only the optical measurements until dual sensor tracking recommenced at

'G', with the re-introduction of radar measurements.

In real time operation, track loss will occur once the optical tracker has been seduced,

because the optical measurements from the interfering source will move the AFKF track,

and therefore the mount, away from the original target.

Again the problems associated with the absence of data association are highlighted,

with both clutter and other targets likely to degrade tracking performance.

3.3.3.7 Sensor Registration Errors

The problems associated with sensor registration errors are illustrated by introducing an

artificial 2 milli-radian azimuth offset between the radar and optical data in one of the

collected data sets. The resulting tracks are shown in figure 3.13, where the dotted track

represents the optical Kalman filter, the dashed the radar Kalman filter, and the solid the

AFKF. The AFKF track falls between the two sets of measurements, its actual position

determined by the relationship between the noise covariance of the two sensors. The

AFKF track will be closer to the sensor with the lowest noise covariance; therefore the

error is relatively small if the optical sensor is correctly aligned. However, if the radar is

the correctly aligned sensor, the error is much larger. Therefore it is more important to

align the higher resolution sensors accurately or to include the registration errors in the

AFKF.
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Figure 3.13: Azimuth tracking error with sensor misalignment

3.3.3.8 Summary of Real Data Evaluation of AFKF

The performance of the AFKF has been evaluated using real radar and optical data.

Under near ideal conditions, the AFKF performed as expected, providing state estimates

with lower covariance (and therefore higher confidence) than those obtained from either
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the radar or optical Kalman filters. This improvement was only marginal over the optical
Kalman filter because the optical sensor has a significantly higher resolution than the
radar.

At close range, the optical sensor had difficulty maintaining a consistent centroid
position on the target's body. The resulting jitter added extra noise to the optical mea-

surements that was not accounted for in its measurement model. The resulting tracking
performance from both the optical Kalman filter and the AFKF under these conditions
was inferior to that of the radar Kalman filter.

The optical sensor has no range measurement, therefore it cannot discriminate between

targets that are separated only in range. As a result, it was often seduced by clutter and

other targets and, because the Kalman filter and the AFKF do not perform any data
association, the trackers were seduced from the target of interest by the high resolution
optical measurements from these other sources.

The angular measurements from the radar contributed little to the AFKF during
normal operation. However, if the optical sensor failed, the AFKF continued tracking
using only the measurements from the radar. Therefore lower resolution measurements

may make a significant contribution to system performance in the event of sensor failure.
The higher the resolution of a particular sensor, the more critical it becomes to cor-

rectly align that sensor. In practice, the highest resolution sensor should provide the
datum to which the other sensors are aligned.
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Sensitivity to Model Errors in F\rsed

Trackers

A number of assumptions are prerequisites for the successful tracking of a target's dynamic

behaviour. These assumptions determine how the expected dynamics of a target and

the characteristics of the sensors providing the measurements are represented, and this

information is generally expressed as dynamic and measurement models respectively. Of
particular interest to the tracking filter designer is the effect of discrepancies, or mismatch,

between the assumed models and the physical phenomena they represent, particularly

as physical characteristics change with time and the environment. The study of this

robustness to model errors is referred to as sensitiuity analgsi,s, and it has been covered

extensively for single sensor systems, in particular the Kalman filter (Gelb 1992).

The sensitivity of a dual sensor fused Kalman filter to model errors is compared to

that of a single sensor Kalman fi,Iter that uses one of the two sensors used by the fused

Kalman filter.

4.L Sources of Model Mismatch

Model mismatch may occur in either the dynamic (process) model or the measurement

model (Gelb 1992). In the process model of a linear Gaussian Kalman filter (3.1), the likely

candidates of model mismatch are the state transition matrix (F) and the additive process

noise. Model errors in the state transition matrix arise from non-linearities and higher

order dynamics. These linearities may be compensated by adding additional process

noise. The physical processes that the additive Gaussian process noise represent are

generally not Gaussian distributed. Also the processes may not be uncorrelated over

time, introducing bias into the noise. Although both these contravene the assumptions

of the linear Gaussian Kalman filter, their effects will not be considered here. Assuming

zero mean Gaussian process noise, the only parameter left in the process noise model is

its covariance (Q). This is a critical design parameter of the Kalman filter because it
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directly affects the gain of the filter. If the filter's assumed or design value is higher than

that of the data, the filtered state estimates will contain excessive noise. A value that is
too low will ultimately cause the filter to diverge from the true track.

In the measurement model (3.2), mismatch may appear in the measurement matrix
(H) or the additive measurement noise. Errors in the measurement matrix are gener-

ally caused by non-linearities in the transfer function between the target state and the
measurement vector. These may be approximated by additional measurement noise and

are not considered here. As for the process noise, the measurement noise is assumed to
be zero mean and Gaussian. Although this may not accurately represent the physical

behaviour, these effects are beyond the scope of this analysis. The measurement noise

covariance (R) is another critical design parameter; it too determines the filter gain. An
excessive design value of measurement noise covariance will reduce the Kalman gain and

increase the possibility of track divergence, while a smaller value will increase the gain

and introduce additional sensor noise into the state estimate.

The sensitivity analysis presented here will centre on errors in the process noise co-

variance and the measurement noise covariance.

4.2 Performance measures

The traclc error coal,riance (TEC)I provides a quantitative measurement of tracking per-

formance. Adding another sensor under matched conditions improves the track error
covariance and, to produce meaningful results, this effect must be quantified. The fusi,on
gain, introduced in section 3.3.1, provides a quantitative measure of this tracking perfor-
mance improvement and, in the context of this chapter, will be referred to as the assumed

FG, í.e., the value obtained under the assumption of matched conditions.

A similar parameter can be used to specify the performance improvement of the fused

Kalman filter over the single sensor filter under conditions of model mismatch. This new
parameter, the actual FG, is defined as the ratio of single sensor Kalman filter track error

covariance to the fused Kalman filter track error covariance under identical mismatch
conditions for the process noise covariance and the measurement noise covariance of the
sensor common to both filters.

Comparing the assumed FG with the actual FG provides an indication of the compG
nent of performance improvement (or degradation) contributed by the model errors. The
mi,smatch factor (MF) is introduced as the ratio of actual FG to assumed FG. The MF
provides â, measure of the performance improvement (or degradation) of the fused Kalman
filter caused by model mismatch relative to that of the single sensor Kalman filter. As the
minimum track error covariance occurs under matched conditions, any increase in actual

rUnder zero average track error conditions, the track error cova¡iance is defined as the average squared
track error.



FG is caused by a smaller rise in the track error covariance of the fused system than for

the single sensor system. Therefore the fused system is affected less by the mismatch and

is thus more robust. If the relative increases in the single and fused systems' track error

covariance are the sa,me, the actual FG maintains its assumed value. Therefore, under

these conditions, where the sensitivity of both systems is the same, the MF is unity. An

increase in actual FG relative to the assumed FG causes a rise in the MF, where values of

MF above unity indicate that the fused system is less sensitive, and values of MF below

unity indicate a greater sensitivity in the fused system.

4.3 Filter Models

The Kalman filter described in section 3.1 was used for both the single sensor and fused

Kalman filters. Each used a second order (constant velocity) target state model to rep-

resent the target's dynamic behaviour. The state transition matrix and process noise

covariance matrix are given in (3.7). For a fixed measurement update rate, the only de-

gree of freedom in the process noise covariance matrix is the continuous time process noise

covariance q2 (section 3.3.2). It is this parameter that is used to vary the process noise

covariance. Both Kalman filters operate with a uniform update rate, therefore the time
dependence in the notation has been dropped for convenience.

The one dimensional measurement from each sensor is modelled using the measurement

matrix in (3.S) with a scalar measurement noise covariance 6G)2. The measurement matrix
and measurement noise covariance for the single sensor Kalman filter is given as

fl : ¡(t)

4.3. FILTER MODELS

and for the fused Kalman filter with simultaneous measurements,
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(4.1)

(4.2)

ft - 6(r)2,

0fl-
p(t)

¡(z)
ft-

6(z)z

Sensor 1 is common to both the single sensor and fused Kalman filters, and as such is

labelled as the original sensor. Sensor 2 has been added to the single sensor Kalman filter
to form the fused Kalman filter, and it is referred to as the addi,tional sensor.

4.4 Theoretical Track Error Covariance

The theoretical steady state track error covariance of a Kalman filter may be determined

by solving the steady state Riccati equation, i.e.,

p," : (1 - K""H¡ (re,,rr + a) (1 - K,"H)t + K,"RKI (4.3)
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where P", denotes the actual steady state track error covariance, Kr" the steady state

Kalman gain and Q and R the actual process noise covariance and actual measurement

noise covariance of the data. The equation in this form does not rely upon optimal
operation of the Kalman filter, and it is therefore suitable to use under the non-optimal
conditions of model mismatch.

The Riccati equation cannot be solved explicitly and therefore must be solved itera-
tively. Let Q¿r and R¿l denote the filter design or o,ssun'ùed values of the process noise

covariance and measurement noise covariance respectively, with assumed parameters q|,
a.td o$)2 and og)'. Design (assumed) parameters and variables calculated from the as-

sumed design parameters, i.e., data independent parameters and variables, are identified
by the subscript ¿, and the superscript (';) denotes the value of that variable at the ith
iteration.

Denoting M$ as the assumed predicted state error covariance and P$ as the assumed

track error covariance at the ith iteration, and commencing with some large value of initial
state error covariance p(o) : ef;), ttre assumed and actual track error covariances are

calculated using

M9:Fe$-t)Pr*Q¿

K9 :ru$n'(""9Hr + *r)-'
r - x$n) rvr

(i)
D (4.4)

p(,i) : (r - r$H) {re,n-',p. + e) (r - x$n)'* 
^g)RKg'.

The equations in (4.4) are repeated until P(') and P$ both converge, i.e., p"" 4 p(;) 
=p(;-t) and P¿,, g pg) È Pg,-l) (Gelb 1992). Note that the first three equations are

simply the covariance update equations of the Kalman filter in (3.3) and (3.4), and the
fourth is the steady-state Riccati equation of (a.3).

4.5 Methodology

A selection of single sensor and fused Kalman filters with various design values of process

noise covariance and measurement noise covariance were applied to two hundred sets of
statistically equivalent simulated data. The average steady state covariance of. the traclc

error2 was estimated for each filter from these simulations.

This actual track error couariance P,", calculated using (4.4), depends on the actual
values of covariance for the data, i.e., it takes into account any mismatch in the filter
models and the data. The Kalman filter calculates the track error covariance assuming

2Difference between the estimated ta.rget state and the target's true state
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that its models are matched to the data, and this assumed track error covariance P¿"" is

also obtained from (4.4). If the filter is matched to the data, P* and P¿," â,r€ identical.

The effect of process model mismatch was evaluated by varying the design value of

the filter process noise covariance while matching the measurement noise covariance to

the data. Similarly, the effect of measurement noise mismatch was evaluated by varying

the filter design value of the measurement noise of each sensor while maintaining matched

process noise.

Variations in covariances over three orders of magnitude either side of the matched

values, i.e., 0.001-1000 times the matched value, were considered. In the process noise

mismatch results, the process noise covariances and measurement noise covariances are

all normalised to the process noise covariance of the data. For the measurement noise

mismatch, these same variables are normalised to the original sensor's measurement noise

covariance. Provided all measurement and process noise covariances are scaled by the

same value, the fusion gains and mismatch factors are not affected because they are

ratios of the TEC's. The absolute values of track error covariance are not important, as

only the trends and relationships between such parameters are of interest. Therefore, for

convenience, these are scaled by the single sensor track error covariance corresponding to

matched conditions. The results obtained from the simulations were in close agreement

with the calculated values, therefore only the calculated results are presented.

The ratios of assumed covariance to actual covariance are referred to as mismatch

ratios for both process and measurement noise mismatch. Increases in mismatch, as

opposed to increases in mismatch ratio, refer to movements of the mismatch ratio away

from unity, i.e., matched conditions, in either direction.

4.6 Results

This section contains the results obtained for mismatch in both process noise covariance

and measurement noise covariance.

The horizontal axes in the plots that follow, generally labelled log mismatch ratio,

represent the logarithm (base 10) of the ratio of assumed covariance to the actual covari-

ance, e.g., togroþ and logro $. fn. use of logarithmic scales not only provides a clear

presentation of the results over several orders of magnitude, but the differences between

these logarithmic plots represent the logarithms of the ratio parameters, €.g., the FG and

MF.

4.6.1 Process Noise Mismatch

The assumed track error covariance (TEC) produced by both filters, as shown in fig-

ure 4.1(a), increases as the mismatch ratio increases, i.e., it increases as the ratio of
the assumed process noise covariance to the (constant) actual process noise covariance
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Figure 4.2: FG ând MF for mismatch in process noise covariance

increases. Close inspection of figure 4.1(a) reveals that as the assumed process noise

covariance increases, the separation between the single and fused Kalman filter TEC's,
representing the logarithm of the assumed FG, increases slightly. An explanation of this
behaviour is provided in section 3.3.2.1.

Figure 4.1(b) shows that the actual TEC is at a minimum under matched conditions,
where it corresponds to the assumed TEC, and it increases as the level of mismatch
increases in either direction. As the mismatch ratio decreases from unity, the gains of
both filters are reduced, and the measurements have less influence on the filter output.
Therefore the influence of the process noise increases and, as the actual process noise is
larger than that assumed by the filter, some of the extra actual process noise is transfered
to the track error. T[eating the dual sensor measurements in the fused Kalman filter as a

single compressed measurement (Willner et al. 1976), the gain of the fused Kalman filter

single sensor KF

fused KF

a.ssumed

actual
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is larger than the gain of the single sensor filter because the covariance of the compressed

measurement is less than the covariance of either single measurement. Therefore the fused

filter relies more on the measurements than the single sensor filter, and less of the extra

actual process noise appears in its track error. Therefore, if the mismatch ratio is around

unity, this lower contribution of process noise keeps the ratio of single sensor filter to dual

sensor filter TEC, i.e., the actual FG, approximately constant, as shown in figure a.2@).

As the mismatch falls significantly below unity, the measurements of both filters have

less effect, so the difference in the contribution of the process noise to the TEC between

the filters becomes less significant, and the reducing gap between their TEC's produces a

decrease in the actual FG, eventually approaching the assumed FG from above, as shown

in figure a.2@).

As the mismatch ratio rises significantly above unit¡ the filter gains increase and less

process noise is transfered to the track error. However, the filter gains are becoming more

dependent on the measurement noise covariance and, because this covariance is lower for

the fused Kalman filter, the gain of the fused filter is increasing relative to that of the

single sensor filter. Therefore the difference in the process noise contribution between

the single and dual sensor filters is increasing and the dual sensor filter's TEC does not

increase as rapidly as the TEC of the single sensor filter. This results in an increase in the

actual FG, as shown in figure a.2(a). Under these mismatched conditions, the covariance

of the actual process noise is less than its assumed value and subsequently the TEC is also

lower than its assumed value. The increase in actual TEC as the mismatch ratio increases

is caused by the higher than optimal gains that transfer increasingly greater amounts of

additional measurement noise to the TEC as the mismatch ratio rises.

The MF is the ratio of actual to assumed FG, and figure 4.2(b) shows how it decreases

as the mismatch ratio rises above unity. These values of MF below unity indicate that the

fused filter is more sensitive to errors in process noise covariance than the single sensor

filter. As the mismatch ratio falls below unity, the MF initially rises above unity and then

gradually falls back toward unity, indicating that the fused filter is less sensitive than the

single sensor filter under these conditions. However, the MF is within just over 1% of unity

for the process noise covariance errors of three orders of magnitude considered here, and

may therefore be assumed to be unity over this range, i.e., the Kalman filter's sensitivity

to errors in process noise covariance is not significantly affected by adding another sensor.

These results are for sensors with equal measurement noise covariances. If these co-

variances differ, the effects observed here will be reduced because the behaviour of the

fused filter will be closer to that of a single sensor filter.

4.6.2 Measurement Noise Mismatch

The measurement noise mismatch was considered for three different cases, equal measure-

ment noise covariance in each sensor, an additional sensor measurement noise covariance
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ten times that of the original sensor, and an additional sensor measurement noise covari-

a,nce one tenth of the original sensor.

4.6.2.L Equal Measurement Noise Covariances

In figure 4.3, the single sensor Kalman filter track error covariance is shown as a solid

Iine, the dotted lines indicating the TEC obtained from the fused filter. The ratio of the

assumed measurement noise covariance to the actual measurement noise covariance of the

data for the original sensor appears along the horizontal axis as a logarithmic scale. The

same ratio for the additional sensor appears (as log values) along the right hand side of

the plots, where each label indicates the appropriate (dotted) curve for that value.

Where the mismatch ratio for the original sensor is significantly less than that of the

additional, the fused filter's assumed and actual TEC both approach the respective values
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of the single sensor filter (figure 4.3). Therefore the assumed and actual FG's (figure 4.4)

both approach unity, and the corresponding MF (figure 4.5) also approaches unity. This

implies that, under these conditions, the fused Kalman filter has the same sensitivity

to model errors as the single sensor Kalman filter. This is not surprising because the

fused Kalman filter effectively operates as a single sensor filter and the additional sensor

contributes little to its performance.

As the mismatch ratios of both sensors become similar, the additional sensor begins to
influence the operation of the fused Kalman filter and, as illustrated in figure 4.3(a), its

assumed TEC begins to flatten out. However, the single sensor filter's assumed TEC con-

tinues to rise, and therefore the assumed FG (figure  . (a)) gradually begins to increase.

Also the ratio of the weights for each measurement in the compressed meâsurement of
the fused filter approaches its optimal value, i.e., the compressed measurement has equal

contributions from the measurements of both sensors. Therefore the covariance of the

compressed measurement in the fused filter falls relative to the covariance of the single

sensor measurement, and the actual TEC of the fused filter also falls relative to that of
the single sensor (figure 4.3(b)), increasing the actual FG (figure 4.4(b)). This increase

is greater than that of the assumed FG, and therefore the MF rises above unity (fig-

ure 4.5), indicating that the fused Kalman filter is less sensitive to measurement model

error under these conditions than the single sensor Kalman filter. As the mismatch ratio
in both sensors increases, this effect reduces because the gains of both filters fall and the

measurement noise has less effect.

Continued increases in the mismatch ratio of the original sensor relative to the addi-

tional causes the covariance of the compressed measurement to approach the covariance of
the measurement from the additional sensor, and the actual TEC of the fused filter rises

toward a constant value (figure 4.3(b)). If the mismatch ratio in the original sensor is less

than unity, the actual TEC of the single sensor filter is still falling torvard its minimum
(matched) value, and it actually drops below that of the fused filter, causing the actual
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FG to fall below unity (figure 4.4(b)). As the mismatch ratio of the original sensor is

increased above unity, the single sensor filter becomes mismatched and its actual TEC

begins to rise, giving an increase in the actual FG.

When the mismatch ratio of the additional sensor is significantly less than that of

the original sensor, the fused Kalman filter again operates as a single sensor filter, but
this time using the additional sensor. Under these conditions, its assumed TEC is largely

influenced by the additional sensor, and it becomes independent of the original sensor's

mismatch ratio, as indicated by the horizontal dotted lines in figure 4.3(a).

The actual TEC under these conditions is larger than the assumed TEC because

additional measurement noise is introduced into the TEC if the mismatch ratio is below

unity, or additional process noise is introduced to the TEC if the mismatch ratio of the

additional sensor is above unity, because of the measurement noise mismatch. Therefore

the actual FG is less than the assumed FG and the MF falls away rapidly, indicating that
in this case the fused Kalman filter is much more sensitive to meâsurement model error
than the single sensor filter. This is expected, as the gain in the fused Kalman filter is
larger than for the single filter, and therefore any errors in the measurement noise model

will have a greater effect.

Therefore when the actual measurement noise covariance of both sensors are the same,

the fused and single sensor Kalman filters exhibit the same sensitivity to errors in the

measurement noise covariance if the mismatch ratio of the original sensor is significantly
less than that of the additional sensor. Conversel¡ if the mismatch ratio of the additional
sensor is less than that of the original sensor, the fused Kalman filter is more sensitive to
these errors. However if the mismatch ratio of the original sensor is slightly less than or

equal to that of the additional sensor, the fused Kalman filter is less sensitive than the
single sensor filter to measurement noise covariance errors.

4.6.2.2 Higher Noise Covariance in Additional Sensor

The measurement noise covariance of the additional sensor was increased to ten times

that of the original. Note that a unity mismatch ratio still implies matched conditions,

although the absolute values of measurement noise covariance are different.

When the mismatch ratio in the original sensor is significantly lower than that of
the additional sensor, the fused Kalman filter again operates as a single sensor Kalman
filter using the original sensor and, as for the case of equal actual measurement noise

covariances, the MF is unity (figure 4.8) and the fused Kalman filter shows the same

sensitivity to measurement noise covariance errors as the single sensor Kalman filter.
The additional sensor with larger actual measurement noise covariance now begins

to significantly affect the fused filter's assumed TEC when the mismatch ratios of both
sensors are almost equal (figure a.6(a)), not rvhen the original sensor's mismatch ratio is

less than the additional sensor's, as is the case for equal measurement noise covariances,



4.6. RESULTS 53

O
f¡l
F
bo€

O
f¡l
F
bo
I

2{
-2

I
-i
0

12

-1

-t

-2

{

-2 -t _? -1

original sersor log mismatch ratio originâl sensor log mismatch ratio

(a) Assumed (b) Actual

Figure 4.6: Track error covariance with measurement noise mismatch where the additional
sensor is noisiest

tso9¡

2

-2

o5

0

h a5

-1
-!

additional sensor

log mismatch ratio
original sensor

log mismatch ratio

addiiional sensor

log mismatch ratio
original sensor

log mismatch ratio

{ { l{

(a) Assumed (b) Actual

Figure 4.7: Fusion gain with measurement noise mismatch where the additional sensor is
noisiest

and the corresponding rise in assumed FG also commences at these larger mismatch ratios

in the original sensor (figure 4.7(a)). For equal mismatch ratios, the actual TEC only falls

slightly below the single sensor filter's actual TEC (figure 4.6(b)) because the additional

sensor contributes little to the compressed measurement. The corresponding rise in actual

FG is no longer significant (figure 4.7(b)), and therefore the ¡ise in MF above unity also

becomes insignificant (figure 4.8). This results in no appreciable change in the fused

Kalman filter's sensitivity to measurement noise covariance errors.

As the mismatch ratio of the original sensor continues to increase, and the additional

sensor mismatch ratio is less than unity, the fused filter's actual TEC rises rapidly above

the still falling single sensor filter's actual TEC (figure a.6(b)). The resulting trough
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in the mismatched FG is now much deeper and more pronounced than for the case of
equal measurement noise covariances (figure 4.7(b)). However, the assumed FG is much

larger than the actual FG when the additional sensor has a lower mismatch ratio than the

original sensor (figure 4.6), and the MF (figure 4.8) again falls offrapidly, indicating that
the fused Kalman filter is more sensitive to errors in the measurement noise covariance

than the single sensor filter.

Therefore, from a practical viewpoint, increasing the actual measurement noise covari-

ance of the additional sensor only significantly affects the sensitivity of the fused Kalman
filter when the mismatch ratio of both sensors are approximately equal. In this case, the
reduction in measurement noise covariance error sensitivity becomes less significant as the
actual measurement noise covariance of the additional sensor is increased above that of
the original sensor.

4.6.2.3 Lower Noise Covariance in Additional Sensor

The final results in this section were obtained when the measurements of the additional
sensor had a measurement noise covariance one tenth that of the original sensor's.

Again the results were similar to the case of equal actual measurement noise covariance

in both sensors when the mismatch ratios in the original sensor were less than those of
the additional sensor, with the sensitivity of the two filters being similar.

The lower noise covariance of the measurements from the additional sensor causes it
to influence the assumed TEC of the fused Kalman filter rvhen the mismatch ratio of
the original sensor is much less than that of the additional (figure a.9(a)). Therefore

the assumed FG begins to increase at these lower values of original sensor mismatch
(figure a.10(a)).

As the original sensor's mismatch ratio approaches that of the additional sensor, the
actual TEC of the fused filter has already reached its minimum and is beginning to
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Figure 4.10: Fusion gain with measurement noise mismatch where the original sensor is

noisiest

increase (figure 4.9(b)). If the mismatch ratio of the additional sensor is less than unity,

the additional sensor has significantly reduced the fused filter's actual TEC below that

of the single sensor filter. Therefore the actual FG (figure 4.10(b)) rises rapidly to a

larger value than obtained for equal measurement noise covariance. As this increase is

much greater than the increase in assumed FG, the MF increases substantially above

unity (figure 4.11). Therefore reducing the actual measurement noise covariance of the

additional sensor decreases the sensitivity of the fused Kalman filter when the mismatch

ratios of both sensors are almost equal.

Further increases in original sensor mismatch ratio only slightly increase the fused

filter's track error covariance, but the track error covariance of the single sensor filter
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is still falling. However, the single sensor filter's track error covariance does not drop

below that of the fused, ând the trough in the mismatch FG is therefore much shallower

(figure 4.10(b)). However, the MF rapidly falls below unity for additional sensor mis-

match ratios less than those of the original sensor, again showing increased sensitivity to
measurement noise covariance errors.

The only significant difference between this result, and that for equal actual measure-

ment noise covariance in both sensors, occurs when the mismatch ratio for original sensor

is slightly less than or equal to the mismatch ratio of the additional sensor. Here the
sensitivity to measurement noise covariance is reduced to an even greater extent than for
sensors with equal measurement noise covariance.

4.7 Summary of Sensitivity Analysis

The fused Kalman filter shows no significant improvement or degradation in sensitivity
to errors in the process noise covariance over the single sensor Kalman filter.

The sensitivities of the fused Kalman filter and single sensor Kalman filter to mea-

surement noise covariance errors are similar if the mismatch ratio of the original sensor is

smaller than that of the additional sensor. If the mismatch ratio of the additional sensor is

less than that of the original sensor, the fused Kalman filter exhibits a greater sensitivity
than the single sensor Kalman filter to errors in the measurement noise covariance.

V/hen the mismatch ratio of the original sensor is marginally less than or equal to that
of the additional sensor, the fused Kalman filter is less sensitive to these measurement

noise covariance errors. This reduction in sensitivity becomes more significant as the

actual measurement noise covariance of the additional sensor falls relative to that of the

original sensor. It becomes less pronounced rvhen the mismatch ratios of both sensors

increase above unity, because the influence of the process noise increases.



Cuaprpn 5

Multi-Sensor Multi-target Problem
Formulation

The AFKF (chapter 3) is a useful tool for tracking single targets using measurements

from multiple sensors. However, it assumes that all these measurements originate from

the target being tracked. This is usually not the case in real environments, where mea-

surements may be received from other targets, or may simply be caused by clutter and

other sources of noise, i.e., false alarms.

Under these circumstances, it is necessary to determine which of the available mea-

surements should be used to track a particular target. This problem is known as data

association, and the peril of ignoring it has been demonstrated in section 3.3.3 where an

AFKF was used on real data.

This chapter defines the multi-sensor multi-target tracking problem, specifies the struc-

ture of the estimator's observer and introduces appropriate target models. It follows Streit

and Luginbuhl's formulation (Streit and Luginbuhl 1994, Streit and Luginbuhl 1995) for

their Probabilistic Multi-Hypothesis Tracking (PMHT) algorithm. Differences between

the single sensor formulation of Streit and Luginbuhl and this multi-sensor version are

highlighted. The problem is initially restricted to single simultaneous measurements from

each sensor to give a clearer explanation of the problem. This restriction is lifted, giving

a formulation for asynchronous sensors, and the chapter then concludes by considering a

general problem with multiple sensor models for each physical sensor.

5.1 Problem Definition

Consider a surveillance region that is monitored by S > 1 sensors.r The sensors report

target activity within this region by providing measurements from detected targets. Let

ZT denote a batch of measurements received from the sensors over the period of time ú1

lAlthough this formulation is also valid for S = 1 (single sensor), only the multi-sensor problem is
considered here.
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to ty. Assume that the measurements are received at times denoted ltr,tr,.. .,trl, where

ú¿ ( ú¿+r for all i. Then the batch of measurements may be denoted

ZT : lzt,ztrr...rzb) (5.1)

where z¿, is the measurement scan at time t¿. Each measurement scan comprises of one

or more measurements produced at time ú¿, i.e.,

T
Zt. = frÍl'', uÍ?' ,...,"Í:')'f (5.2)

where "l! i" the rth measurement in the scan at time ú¿ and n¿, is the total number of

measurements in that particular scan. It is assumed that the dimension of all measure-

mentsfromaparticularsensor Nt), t:L,2,...,S, is constant, but itmaydifierbetween

sensors. Note that if each scan contains every measurement occurring at that time, then

the condition ú¿ ( ú¿-,.1 holds for all i. The possibility of t¿ - ú¡a1, introduced above, allows

the batch of measurements to be processed sequentially or in related groups such as all

measurements with the same latency (i.e., from the same sensor).

6.2 Observer Structure

The obseruer estimates the state of the system, i.e., the dynamic state of all targets over

the period ts to ty, from the batch of measurements. The structure of the observer is

based on a state space representation of the target states, and this forms the framework

for the material in the following chapters.

Let M ) 1 denote the maximum number of targets2 in the surveillance region during
the time interval fi to t7.3 Let úo be an arbitrary time, prior to the batch of measurements,

at which the initial a pri,ori state for each target may be defined. The assumed a priori
statevectorforthemthtarget,ffi€{7,2,...,M},isdenotedx[i),anaitscovaria"..Iji)
provides a measure of the uncertainty between this value and the true target state. In
practice, these state vectors and their covariances are obtained from a track initialisation
algorithm.

The collection of all target states for all times ts to ty, X?, is denoted

Xr : fxttlr,X(r)r,...,X(t)t]t ¡(rn) - l"Íf,,*Íï),...,*Íï,] (5.3)

where X(-) denotes the set of state vectors for target rn, and xl-) denotes the state vector

for target rn at time ú¿. The dimension of all state variables for the rnth target model, Nll),

2M : I corresponds to single target tracking in the absence of false ala¡ms. This problem is trivial
as all measurements are, by definition, assigned to the target.

3Additional models may be used to represent false ala¡ms caused by clutter or other sources of noise.
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is constant. However, this dimension may vary between target models, e.g., in a generally

benign environment, the target models may only require position and velocity in their

state vectors, but additional models that include acceleration states may be added for

occasional highly manoeuvring targets. The collection of target states may be partitioned

in time, giving the alternative representation

X? : [Xro,X,,,...,Xrr] Xr, = l"Í]'t,*Í:)-,...,*ÍPt] (5.4)

where X¿, is the set of state variables for all targets at time t¡.

The objective is to estimate the state of each target from the batch of measurements.

The problem is that the data is not complete, i.e., although the measurements are present,

the information indicating which measurements belong to each target is generally missing.

This missing information is the set of measurement to target assignmenús, or simply the

target assignmenús, and is denoted

K":[k,0,k,,,...,k,r] k,,= lnÍi',nÍ:),...,kj|"'] (5.b)

where kÍ? : n1,, n'L € {1,2,...,M}, denotes the target that produced the measurement

"Í?. k¿, is the set of all target assignments in the scan at time ú¿. Note that as no

measurements are available at time úe, no target assignments are present at this time, i.e.,

k¿o is the empty set {/}.
The unknown target assignments are required to estimate the target states and there-

fore need to be determined. Streit and Luginbuhl (1995) approached this problem by

including the target assignments in the observer with the target states. The same tech-

nique is used here, and the structure of the observer O" is therefore the same as that used

by Streit and Luginbuhl, i.e.,

O": [Oro,Or,,...,Orr] O¿, = [Xr,,kr,] (5.6)

where O¿, is the observer state for the measurement scan at time ú¿

Aside: It is assumed that each measurement is assigned to exactly one target. Mea-

surements that don't belong to any real targets, i.e., false alarms, may be assigned to

additional target models representing clutter, noise, etc. In this way, all measurements

are assigned to at least one target model. The problem of assigning a single measurement

to multiple target models may arise when tracking a cluster (formation) of targets with
different resolution sensors. The high resolution sensors may be able to resolve the indi-

vidual targets within the cluster, but the lower resolution sensor may only see a single

target, the entire cluster. In this situation, the measurement from the low resolution

sensor should really be assigned to all the targets in the cluster. However, the tracking

filter will virtually ignore the low sensor measurements because they are less accurate

T
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than the high resolution measurements. Assigning the low resolution measurements to a
target will therefore have little effect on the estimated track for that target, and therefore

these measurements may be assigned to any target within the cluster without significantly

affecting the track estimates. If the low resolution sensor provides additional information,

it may be able to resolve the targets using this information and therefore produce a mea-

surement for each target. For example, radars usually have poor angular resolution but
provide additional information in the form of high resolution range measurements. If the

targets can't be resolved by this additional information, the single available measurement

will be assigned to one of the targets within the cluster. However, the target to which this

measurement is assigned will depend on the actual measurement itself, and the current

estimated position of each target in the cluster, at the time of the measurement. The

target assignments for the measurements from this sensor will vary over time, therefore

it is very likely that each target in the cluster will receive this additional information at

various times during tracking. Given the above argument, it is considered that the restric-

tion of assigning each measurement to exactly one target does not present a significant

limitation.

5.3 Synchronised Sensors

The problem is initially restricted to simultaneous single measurements from each sensor,

i.e., each meâsurement scan contains exactly one measurement from each sensor. This
restriction provides a simpler explanation of the problem. In a practical sense, this re-

striction corresponds to the situation where the sensors all report measurements at the

same time, i.e., they are synchronised, and no sensor misses any target detection. This

situation is somewhat artificial, because in real scenarios different types of sensors would

be deployed to improve overall tracking accuracy and decrease the susceptibility of the

system to clutter and intentional counter measures. Different sensors would be unlikely
to have the same measurement rates and would occasionally fail to detect targets, partic-
ularly if some of the targets are small. However, this restricted problem provides a useful

and relatively simple introduction to the problem. This restricted multi-sensor problem

differs from that of Streit and Luginbuhl (1995), who assumed a single sensor capable of
producing multiple simultaneous measurements.

The restriction fixes the number of measurements in each scan to ^9, i.e., frt, : S,

i : L,2r. ..,?. As each measurement scan contains exactly one measurement from each

sensor, the measurement vectors and target assignments within each scan may be refer-

enced by their sensor number, i.e., zji) ana ,tjj) respectively.

This problem is illustrated by the simple example in figure 5.1. At the top of this
figure are two target trajectories, target / and target 2. The initial state of each target at
time ús and the state of each target at the measurement times tt,tz,. . . , úo are contained
in the respective state variables, X(t) and X(2). The targets are monitored by two sensors,
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sensor I and sensor 2, each producing a measurement at each measurement time, i.e.,

ujl) u"d 
"j?). 

S"ttror 1 receives its first three measurements (denoted as x's superimposed

on partial target trajectories in figure 5.1) from target 1 and the last three from target

2. This is reflected in the appropriate target assignment values of fil). Sensor 2 sees

the other target at each measurement time. To estimate the trajectory of target 1, the

measurements corresponding to all kjl)'s with values of 1, i.e., 
"Íl), "Íl), "Í!), 

rÍ1) , zl!) aa
,!f,) , ur"required. For target 2, on the other hand, measurements with kil)'s of 2, i.e., zfl) ,

"Í?) 
, "Í?), "Íl), "Í!") 

und 
"iut), 

are used. Therefore the target assignments act as pointers to

the apþropriate measurements to use for estimating each target trajectory. Note that, at

any time, both sensors could have seen the same target. In this case, both measurements

would be assigned to one target and no measurements to the other.

target 1

¡(r): [*Íå,, .,*Íå,]
target 2

¡(z): l*Í.,,,. ,*Í3,]

sensor 1 sensor 2

þÍl',...,"Í:']

I

l,Í?',..-,"Í:'l

7r

eÍl
f¡x
i

tX

,*
X/
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.),1 ,
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.tl

)
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t
65 t

Í-x-
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->a

Figure 5.1: T[acking two targets with measurements from two sensors
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5.3.1- Models

A separate state space model is used to represent the behaviour of each of the M targets.

These target models each contain a process model to describe the target's dynamic be-

haviour and a rneasuren'ùent model to represent the measurements and their relationship

to the target states.

The general form for the process or dynamic model for target rn is

*Íl):rr^r(rn,"Íï|,*ÍIì) ,:r,2,...,r (5.2)

where /(-)(.) is the target dynamic function that depends on time, the previous target

state and the target's process noise *j-).. It is assumed that the dynamic models for each

target are independent, although this assumption is not strictly correct if the targets are

moving in formation. However, over all possible scenarios, no two targets can be assumed

to always be in formation, and therefore may be assumed to be statistically independent.

The general measurement model for the measurement from sensor s at time ú¿, 
"fi), 

it

¿(1,s)

¡(2,s)

t,, *jl),.rj-t'')

tn,*Í?),uÍ?"

measurement from target 1

measurement from target 2
(5.8)

¡(M,s) (, n, *ÍYr,rÍ,t',) ) measurement from target M

where ¡(m's) (.) is the time variant measurement function for target rn and sensor s. This
function depends on the target state x[-) and measurement noise vjl''). Th. measurement

is assumed to originate from a single target, therefore only one of the alternatives in (5.8)

is valid. This implies that the measurement model for this measurement will only appear

in one target model, the one pointed to by the value contained in the target assignment

{j). fne measurement model may be viewed as a finite mixture of the M measurement

functions at time ú¿. In this case, all the mixing parameters are zero with the exception

of the one corresponding to the value of {,") which is unitg i.e.,

(5.e)

where the mixing parameter. 
"Íï) are defined as

"Í:) 
:

M

,Íi) : \ "19 
n{^,", (rn, "Íï), "Íi''))m=l

if ,tji) : rn

otherwise.
(5.10)

1

0

Consistent rvith Streit and Luginbuhl (1995), the measurement model for sensor s in
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target model n't, may be written

,Í:) : ¡(m's) (rn,*Íl',"Íï'")) l-=nf", i:t,2,.'.,7, s:1,2,...,s (5.11)
-n\

which states that the model is valid given that it originated from target rn. This may be

viewed as a conditional model, i.e., it is only valid if the measurement was produced by

the target to which the measurement belongs.

This measurement model differs from that used by Streit and Luginbuhl (1995) because

it depends on the sensor that produced the measurement. Streit and Luginbuhl's mea-

surement model depended only on the target and time, a perfectly reasonable assumption

given that their work only considered a single sensor with possibly simultaneous measure-

ments. In the formulation presented here, measurements from multiple dissimilar sensors

are allowed. The measurement model describes the relationship between the measurement

and the appropriate state vector. The measurement vectors from each sensor may vary,

€.g., â radar may provide bearing and range meâsurements and a passive electro-optical

sensor may provide only bearing measurements. Also the components and structure of the

state vector may vary between target models, e.9., second or third order dynamic models.

Therefore this relationship between the measurement and state vector will depend on

both the sensor and the target model.

The measurement noise also depends on both the sensor and the target model. Dif-

ferent types of sensors will have different resolutions and contribute different types and

levels of measurement noise. Also different types of target will also affect the measurement

noise, for example a large target at close rânge may have several dominant well separated

radar reflectors, resulting in more uncertainty in the location of the target's centroid than

would be the case for a small distant target. In general, this noise cannot be separated

into sensor dependent and target dependent components because the sensor component is

affected by the target, and vice versa. For example, a small target will decrease the signal

to noise ratio and therefore increase the measurement noise from a sensor, and any target

dependent component of the noise will be different for radar and optical measurements

because these sensors use different physical processes to produce their measurements. It is
worth noting that differences in the process model between target types are often consis-

tent with the measurement model, e.9., any manoeuvring target is likely to be physically

small while larger targets are more likely to be benign.

5.3.1.1 Linear Gaussian Models

Often models are simplified by assuming a linear system with additive Gaussian noise.

Under these conditions, the dynamic or process noise for target model m at time ú¿,

denoted u, *j-), is assumed to be Gaussian distributed with zero mean and known

covariance OÍÏ). *j-) ir also assumed to be uncorrelated over time and independent



64 CHAPTER 5. MULTI-SENSOR MULTI-TARGET PROBLEM FORMULATION

between target models, i.e.,

n l*iir*,!''] : aÍï) if m: p anð. i : j
0 otherwise.

(5.12)

(5.14)

The assumption of independent noise between target models is consistent with the inde-

pendent target assumption in the general form of the model. Under these conditions (5.7)

becomes

"Íï)
rfïl"fïl +*j:ì i : !,2,...,r (5.13)

where fji), .epresents the transition matrix describing the target dynamics from time f¿-1

to t¿.

As for the general measurement model (5.11), the linear Gaussian measurement model

is a function of the sensor, target and time. The measurement noise vjl'') i, u..u*ed to
be Gaussian distributed with zero mean and known covariance RÍï''). The measurement

noise is assumed to be uncorrelated in time and independent between measurement models

and sensors, i.e.,

E þf'')"Íl'') 
t] RÍi'') tfm: p, s:v andi: j

0 otherwise.

The measurement noise vjl'') is dependent on both the sensor and the target, and it is

reasonable to expect some correlation between the measurement noises when either the

target model or the sensor are the same, i.e.,

u [.ri-''1.r1'"'øtl + 0 or r ["ji'')"ir'"lr] I 0.

In practice, it is likely that this will be less than the measurement noise covariance RÍi'').
Therefore, for simplicity, it is assumed that (5.14) holds, and (5.11) may be written

"Í:): Hj-'')*(-) +vj-'') l-=u5", i:1,2,...,7, s:1,2,...,s (5.15)

where, at time ¿n, HÍÏ'") represents the measurement matrix mapping the state space of
target rr¿ onto the measurement space of the sth sensor.

5.4 Asynchronous Sensors

Section 5.3 defined a multi-sensor multi-target tracking problem in which each meâsure-

ment scan contained exactly one measurement from each sensor. This type of problem
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is unlikely in practice, particularly for systems using dissimilar sensors. Different types

of sensors use different physical processes to detect targets, and the accuracy, resolution,

detection rânge and other sensor parameters may all vary between such sensors. Different

sensors may also have different measurement rates, depending upon the complexity of

its internal processing, mechanical limitations or the type of application for which it is

intended. Some sensors, such as surveillance radars, are capable of detecting multiple

targets within a single scan, and at times, particularly with weak or fluctuating targets, a

sensor may miss detections. Therefore a typical measurement scan may contain a single

measurement from some sensors, multiple measurements from others and no measure-

ments from the remaining sensors.

Under these conditions, the sensors are operating asynchronously and may be referred

Io as asEnchronous sensors. An appropriate problem formulation and observer structure

for asynchronous sensors has been presented in sections 5.1 and 5.2. The primary dif-

ference between this formulation and that for synchronous sensors (section 5.3) is the

method of indexing the measurements (5.2), and the target assignments (5.5) within a

measurement scan.

These changes to measurement and target assignments only affect the measurement

models (i.e., (5.11) and (5.15)). The asynchronous measurement model is therefore written

,Í? : ¡(rn's) (rn,*Íï',.rÍi'")) l^:o¡,, i : r,2,. -- ,7, r : r,2,.- . ,frt, (5.16)

and for a linear Gaussian system, it becomes

"li) 
: H!-'')*{-) +.rÍï'")

^=r[l)
2 ,7, r:L, ,Ttrt¡ (5.17)

with the covariance of the measurement noise denoted RÍÏ'"). Note that s still denotes

the sensor from which the measurement is received. It is assumed that this is known for

all measurements, a reasonable assumption in practice.

5.5 General Problem Definition

The multi-sensor multi-target problem formulation presented thus far has been concerned

with estimating unknown target tracks from measurements of unknown origin. It has been

assumed that it is known which sensor produced each measurement, and although this in-

formation is generally available, it may be desirable to have multiple measurement models

for particular sensors. This may be useful where the sensor operating characteristics vary

with changes in conditions, or even the state of a target. For example, the measurement

noise from a radar may increase if the signal to noise ratio is reduced by cloud cover or

precipitation, or the uncertainty in optical measurements can increase if large targets are

close to the sensor (see section 3.3.3.3). In these cases it would be desirable to select the

21
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most appropriate measurement model for the conditions.

Therefore the problem formulation is generalised to one of estimating the target tracks

when both the target and sensor model associations of each measurement are unknown.

In this general formulation, ,S no longer represents the number of physical sensors but

the number of virtual sensors oÍ sensor models. Each physical sensor may be represented

by several different sensor models, each designed for a different set of sensor operating

conditions. Therefore these sensor models, 1,2,. .. , ^9 
are partitioned into ns mutually

exclusive sensor seús that each represent a physical sensor, i.e., 5(1) , E(2) , . . . , S("s ) . Each

sensor set contains the number (index) of the sensor models that are included in that set.

For example, a radar and optical system may use two sensor models for the radar, one for

low and the other for high signal to noise targets, and the optical sensor may use one for

normal operation and another specifically for targets at close range. In this system, the

sensor models may be numbered 1,2,3 and 4 as presented above. Then the radar sensor

set is given by.$(t) : {1,2} and the optical sensor set is 5(z) : {3,4}. It is assumed

that the sensor set .S(") for a particular measurement is known, i.e., the physical sensor

producing the measurement is known.

The set Z[i) contains the numbers or indices of the me¿ìsurements in the scan at time

ú¿ from the physical sensor represented by the sensor set ,S('). The number of measure-

ment indices in this set is denoted Tù,G). In the above example, if the first and third
measurements in the measurement ,.ífi ut time ú¿ are from a surveillance radar (sensor

set s : 1), then n?(t) :2 and. zÍ! : {1,3}.ti¡ ûl

To avoid unnecessary repetition, only the differences between the asynchronous sensor

and general formulations will be presented.

5.5.1 General Observer Structure

The observer in (5.6) is generalised by adding a set of n'Leasurement to sensor assignments,

ot sensor assi,gnments, to each scan observer, i.e.,

OT: [Oro,Or,,...,Orr] Or, = [X¿,,k¿,,1¿,] (5.18)

where l¿, denotes the sensor assignments for the measurement scan at time ú¿. The sensor

assignment for a particular measurement contains the number or index of the sensor model

to which that measurement is assigned, i.e., the sensor model producing the measurement

that is most appropriate for the current operating conditions of the sensor. The complete

set of sensor assignments is defined as

Lt : [l,o,l¿,,. . .,1,,] U, : l,Í1,, 
IÍ?),. .., ¿j:','] (5.19)

where ¿Íl) : p, with p € E(') and S(') c {1, 2,.. .,,S}. Therefore the value of each sensor

assignment gives the most appropriate sensor model for the corresponding measurement.
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The range of possible values for each sensor assignment is limited to the sensor models

available for the sensor providing the measurement, i.e., those contained in the sensor set

5(") where s € {1, 2,...,ns}.
It is assumed that each measurement is assigned to exactly one sensor model. In a

practical sense, this is equivalent to each sensor having only a single set of characteristics

for a particular target at the time of the measurement. This is reasonable because at any

time, and for a particular target, the sensor will have a specific set of characteristics, e.g.,

it will have a single value of noise covariance at any particular time.

As for the target assignments, l¿o : {d} because no measurements are available at

time Í¡.

5.5.2 General Models

The general form of the process model introduced in section 5.3.1 for synchronous sensors

(5.7) is suitable for the general problem definition. Likewise, (5.13) is appropriate for

Iinear Gaussian dynamic systems.

The measurement model for synchronous sensors (5.8) was described as a finite mixture

of the measurement models for each target model. In this general formulation, not only

are the measurement models for each target model considered, but also the set of different

sensor models for the sensor producing the measurement, i.e.,

¿(1,s,) (r,, "Íl), 
.rj,r'"')) measurement from target 1 and s€nsor .e1

(r
zì

Ll

)
¿(1,s")

¡(2,sr)

(tu,"Íl

('u'"Í?'

'.rÍ,t't'))

"Í:'"))

measurement from target 1 and sensor sn

measurement from target 2 and s€nSor s1

¡(M,s *) (rn, *ÍYr,rrÍ,t''" ) 

) measurement from target M and sensor s'

(5.20)

where sl,...,s,, denote the sensor models in the sensor set 5('). The finite mixture of
measurement models now becomes

Mt
m:l

I ",,ï,e,,i) 
¡@'ù (rn, *Íi,, "Íï'o))

(5.21),('otí

rvhere the mixing parameters are now "Í?{'Í? (cf. (5.9)), with zr',f) defined as

m) if kll) : m

P€S(')

t¡ : 
{;

'tf
otherwise

(5.22)
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and {rþ.) as

þ
t¡€

1 if rÍ:) : p

0 other\ryise.
(5.23)

T r : Lj2,...,flt, (5.25)

Therefore the measurement model for measurement ,!! to, sensor model p and target

model rn is written

,Í:) : ¡(*,ù (ro,*ÍTr,"fi") 
I

'i,: Lr2r...rT, r :1r2r...,flt¡ (5.24)
^:xli)
,:tÍi)

which implies that the target assignments and sensor assignments are known.

For linear Gaussian systems, the general measurement model is

"Í? 
: nÍT,ù*Í? +nÍ?") ) i:7,2,m=x['.

,=tÍi)

with the covariance of the measurement noise uf'Ð denoted Rj-'r) (cf. 5.15). A similar
model has been considered by Giannopoulos, Streit and Swaszek (1996).

Usually it is only the noise component of the model that will vary between sensor

models for a particular physical sensor, because this noise represents the resolution, ac-

curacy, sensor noise, etc. of the sensor, and it is these characteristics that are most likely
to change.
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Multi-Sensor Probabilistic
Multi-Hypothesis Tracking
(msPMHT)

The multi-sensor Probabili,stic Multi-Hypothesis Tracking (msPMHT) algorithm is based

on the original Probabilistic Multi-Hypothesis Tracking (PMHT) algorithm developed by

Streit and Luginbuhl (1993). This algorithm uses soft or probabilistic measurement to

target assignments instead of the hard assignments used in Multiple Hypothesis Thacking

(MHT) algorithms. This overcomes the exponential complexity problems associated with
the MHT algorithm, because each measurement is apportioned to each target by these

probabilistic target assignments. Therefore the complexity of the PMHT is determined

by the number of targets, which is fixed at a value at least as large as the maximum

number of targets expected. The target state estimates are determined by estimating the

probability distributions of the target assignments and states. It is a batch algorithm that
may be solved iteratively.

The following algorithm development follows from the problem definition, observer

structure and models introduced in chapter 5. While largely the same as the approach used

by Streit and Luginbuhl (1995), the complete derivation is given both for completeness

and to highlight precisely where this work generalises the PMHT algorithm.

The derivation commences considering the restricted synchronous measurement prob-

Iem formulated in section 5.3.

6.1 Observer Likelihood

As discussed in section 5.2, the observer consists of a set of scan observers, one for each

measurement scan. Each of the scan observers Or, I [Xr,,kr,], i:1,2,...,?, contains

a continuous component, the target states, and a discrete component, the target assign-

ments. The objective is to estimate the target states by finding the value of the observer

69
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(target states and target assignments) that maximise the likelihood or probability of the
observer. As the mea^siurements are given and provide the inputs to the observer, it is
really the conditional probability of the observer, conditioned on the measurements, that
should be maximised. Therefore the estimate of the observer O" ir defined as

O" A arsm?xp (Ot lz') =arsm?x p (Ot, Z') :-ars%F p (Ot) p (zt I Ot) (6.1)

where the denominator p (Z') is omitted because it contributes nothing to the maximi-
sation. This is actually a maximum a posteriori (MAP) estimator (Bar-Shalom and

Fortmann 1988). The first step in this derivation is to determine the probability of the
observer states and the probability of the measurements conditioned on the observer, i.e.,
p (o') and p (z' lo').

Commencing with the probability of the observer, and following Streit and Luginbuhl
(1995), the conditional probability density functions (pdf's) of the target states for the
rnth target model are denoted

rtø (xÍi' l"f:ì) ' 
: r,2,...,r (6.2)

and the pdf of the assumed a priori distribution at time ú6 is,

d,(-) ("Íf))

Then, assuming independence between the target dynamic models, the conditional pdf
of all target states at t¿, i.e., for all target models, is written

v(") (X,, I X,,-,) : fr Er^t (xli) 
| "f:l) i: r,2,. ..,r (6.4)

m=l

and, assuming independent target initialisations, the pdf of the target states at ús is

M

(6.3)

(6.5)v(x) (xú.) : fl ú(-) (*Íi))
m=l

The target state at any time depends on the last known value of the state, i.e., it is
a first order Ma¡kovian process. This model is particularly suitable for dynamic targets
because the target moves to a new position using the current position, velocity, etc. Higher
order dynamic states evolve in the same way.

As discussed in section 5.3, the measurements within a measurement scan are uniquely
indexed by their sensor number. This differs from the arbitrary measurement numbers
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used by Streit and Luginbuhl (1995) for measurements from a single sensor.

The target assignment from sensor s in measurement scan ú¿, fjj), is an integer indi-

cating the target from which the measurement zjj) was received. Let n'jT) ,upr.sent the

probability of the event that a measurement at time t¿ originates from the target rn, i.e.,

nÍ:) :n (*Íi, : *) (6.6)

for any sensor s. This probability, referred to as the target rneasurernent probabi,lity,

may be viewed as the fraction of measurements at time t¿ received from target m or,

more generall¡ the expected fraction of measurements from target rn. The fraction of
measurements from a particular target is assumed to be the same for all sensors. This

is obviously not always the case, e.g., if a target is within the detection range of one

sensor and outside the range of another. Howev"r, nf^) is taken as the expectation of the

fraction of measurements from target rn over all sensors, although this does not use all

the available information.

The collection of these probabilities is denoted

T
II? : lntrrrt"r. .. ,1Ítrf , îtt; i

1",'l', " "Íy'l (6.7)
(2)
ti )"',

The param eter r[^) defines the distribution of fjj) and, because the measurements are

assumed to be conditionally independent and identically distributed, it is the same for all
measurements within the scan at time ú¿. This assumption allows the probability mass

function (p*f) of the scan target assignments k¿, to be defined as

E(K) (k¿,) = p (n, : l*Í1,, kÍ?,..,ki,",]') : 
Û ",t, l',=05", 

. (6 8)

No measurements are available at time ús, therefore the probability function of the scan

observer at this time is simply the pdf of the target states, i.e.,

p (Or.) : E(x) (Xr.) . (6.e)

The target assignments within the scan at ú¿ are assumed to be independent of the

target states at that time and of the assignments at time ú¿-1. Therefore, as in the PMHT
(Streit and Luginbuhl 1995), the conditional probability of the scan observer at time ú¿ is

given as

p (o,, lo,,-,) = p (X¿,,k¿, lX¿,-,,k,,-,) = p (X,,,kr, lXr,_,)

= p (X¿, lX,,-,)p (k,,) - E(x) (X,, lX,,-,) vt*l (k,,). (6'10)

The probability of the entire observer is the joini probability of all the scan observers,
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.9

and the pdf for all measurements in the batch as

TS

p(zr,lO¿,) = p(zr,lX¿,,k,,) : g çt^,'l (ztù l"fi,) l_=01,,
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T

d=1

(6.13)

(6.14)

and is written

p (ot) = p (o¿o, o¿,, .. ., o,,) : E(x) (x")ll E(x) (Xt¡ I X,,_,) v(*) (k,,) . (6.11)

Now, considering p (Z' I Ot), the conditional measurement pdf is defined for the
meâsurement zji) as

p (,Í:) lo,,) = p ("Íi) l*,,,u,,) - ç@,s) ("f:' l*Íï') l-=01., (6.12)

where C(-'') t.p.esents the conditional pdf of the measurem ent zt! from sensor s, given

that it originates from target rn.

Assuming conditional independence of mea,surements from different sensors, the con-

ditional pdf for all measurements in the scan at ¿r, conditioned on the target states, can

be written as

p (z,l o') : I g ç(rn,s) (,f:, 
| "Í1,) l_=o¡.,

This formulation contains rnx s measurement pdf 's, one for each possible combination
of target and sensor, i.e., each target model has a measurement pdf for each sensor.

This differs from that of Streit and Luginbuhl (1995), who only used 7n measurement
pdf's. Their target models each contained only a single measurement pdf, a reasonable

assumption given that they only considered measurements that originated from a single

sensor.

Recalling (6.11), the joint pdf of the measurements and the batch observer may there-
fore be written

p (z',o') = p (o') p (zr I o")
T: E(x) (x*) ll,r(*) (X,, lX,,_,) v(K) (k,,)p (r,, I o,,) .

i=1

Substituting (6.4), (6.5), (6.8) and (6.14) into (6.15), the joinr pdf becomes

p(z',ot) = p(z',xt,Kt) :{frf,
L Y:l

*Íí)( )

(6.15)
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' Û {lF, 
''t'(^) (*l?) r-f:l)] g ["'t'tt-''r ('!') l-fl') l-=-,,'] ] (6 16)

which differs from that of Streit and Luginbuhl (1995) only in the measurement pdf's,

i.e., (6.14).

6.2 Development of the msPMHT Algorithm

It is the joint pdf (6.16) that must be maximised (with respect to X") to obtain the

MAP estimate of the target states. However, without knowing the target assignments,

an iterative solution that considers every possible combination of target assignments is

required. Such an approach would be computationally impractical for any measurement

batch of reasonable length.

The alternative suggested here, as in (Streit and Luginbuhl 1995), is to treat the

problem as one of missing data and use the Enpectation-Marimisation (EM) algorithm

(Dempster, Laird and Rubin L977, Wu 1983, Moon 1996) to develop a solution. In this

application, the target assignments KT are the missing data, and the complete data

comprises the measurements, target states and target assignments, i.e., Z' , X' and KT.

In general, it is assumed that X" is the set of parameters defining the target process and

measurement pdf's, and the target states are estimated from these parameters. In the

linear Gaussian case with known covariances, the target process and measurement pdf's

are linear functions of the state means, and it is these state means that are estimated and

subsequently used as the state estimates.

The EM algorithm is an iterative algorithm that converges to a maximum (or station-

ary point in some circumstances) on the joint likelihood surface. Each iteration consists

of two steps, an expectation (E) step and a maximisation (M) step. In the E-step, an

auxiliary function Q is derived as the expectation of the log likelihood function. Any

increase in this function will increase the likelihood function, therefore the solution may

be found by maximising the auxiliary function. The M-step involves maximising the aux-

iliary function with respect to the observer states. Each iteration of the algorithm uses

the estimates from the previous iteration as its initial values.

6.2.L E-Step

The E-step commences by defining the expectation of the log likelihood of the observer

(6.16) over all possible values of KT. This becomes the auxiliary function, given as

e = e(rt, x" | rl"', *t') : t ltoep (z',x',K" : rr?)] o (^t lz',x'', ttt')
K? 

(6.17)
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where the dependence on fI" is made explicit, and the primed variables (') denote initial
values, i.e., estimates from the previous iteration.

Using Bayes rule, the second term on the right hand side of (6.17) can be written

(6.18)

where the denominator represents the marginal distribution of (6.16) over the components

K?. It is defined as

P (K' lz, ,xr) : p (z':!I-'=Í',)
P (zr ,xr)

' ü { lfr_r,,(*ÍT, | 
-riì)] 

U lå 
rro) E(0,') ("r:, 

| 
-tr,)] 

}

(M
p (z',Xt) = Ðp (z',xt, Kt) : \n V,

KT l. z=1
("Íí'

where the summation over KT is defined as

MMMt Dt
til)=r tjf)=r rj|=r

t
Kr

MMtt
*if) ,=r rjf =r

"Íï)

Mt
*fs)=rú7t

(6.1e)

(6.20)

(6.21)

(6.22)

Equation (6.19) illustrates the concept of representing each measurement as a finite mix-
ture of conditional measurement pdf's, where each pdf is conditioned on a different target
model, and the measurement probabilities fI" act as the mixing parameters or propor-
tions, i.e.,

M

Substituting (6.16) and (6.19) into (6.18) gives

Do=rnÍ!' Ç''''' ('Í:' 
| "f í' )

ntP ç{^,0 (,1')

TS
p (K' lz' ,x,) : fl fl ,Íi'",

i=1 s=1 ^:*Í:)

where the target assignment probability, ,f") , represents the probability that the mea-

surement from sensor s in scan ú¿ is assigned to target m. It is defined as

, .(-,r) 
-Wa-

ül

Dy=rn[! çro'"t "Íi)
,.fl)

The first term of the right hand side of (6.17) is obtained by taking the logarithm of
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(6.16), i.e.,

rogp (2", x', K') :itogE4) ("fí,) . Ë É.* çr^t (xÍi, l-f:ì)v:I i=l m=I
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(6.23)

(6.24)

(6.25)

(6.26)

TS
. ÐÐ lr"r nP) +rog((-,') ("f:, 1"Íi,)1 l_=0,,,

Let !*r,oÍ,) represent the summation over all target assignments except one, i.e., the

target assignment for the measurement from sensor s in scan ú¿ is assumed to be known,

and define it as

M M Mt ttt
x'l*ji) rjl):r frÍi-t)=t rj:+t)=r

Mt
*ff)=r

TSM
+ t t t [r"*",1, * log qr^,"t (zlù *Íï,)] ,Íï'",'.

,j=1 s=l rn=l

MMD'
t[f)=r rij)=r

MMtt
rif) .:r rff =r

Then substituting (6.23) and (6.21) into (6.17), rearranging the summation order

tttT nti

RT i=L r-l

TntiMrIt t
i=l r=1 t[:)=r Xr ¡tf")

and using the identity

that was introduced by Streit and Luginbuhl (1995), the auxiliary function becomes

M TM

t p (K' lz',x') - uf,'') 
l_:u',,

x't4l)

q : t tosçQ) ("1í') + t I tor ú@) (xÍ'.' l-f:l)v=7 i=l m=l

o: DaÍP + IoÍ},

(6.27)

,Y")' denotes the target assignment probabilities calculated using X"' and fI?', i.e.,

calculated from previous estimates

The function Q can be broken into ? * M independent sub-functions that may be

maximised individually by separating the variables, i.e.,

T lvI

r'=1 m=1

(6.28)
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(6.31)

where

M s

8ÍP : p (t"r "Í:') Ð,Íï'''' i:1,2,...,r (6.2e)

T

e#) :tosq@) (-ff,) + D bgE@) (*Íï, l"f:ì)
i=L

r s (6.30)

+ D laf,,t'log((-,') (rf, l"Íi,) nt : r,2,.. ., M.
i=l s=l

Again it is only the measurement pdf's that differ from the results obtained by Streit
and Luginbuhl (1995).

6.2.2 M-Step

In this step, the parameters of the probability distributions for the target assignments and
target states are estimated from the auxiliary function (6.28). This has been decoupled

into a maximisation problem for each of the 7 target measurement probability vectors zr¿,

and the M target state sequences X(-), and each of these will be dealt with individually,
i.e., each equation of (6.29) and (6.30) will be maximised separately.

6.2.2.t Target Measurement Probabilities

Consider the decoupled maximisation problem for the target assignments in a single mea-

surement scâr, ?r¿,. These assignment probabilities in the scan at ú¿ must sum to unity as

each represents a fraction of the measurements and the total fraction must be one. The
maximisation of qjfl 1O.ZS) with respect to r¿, is therefore subject to the constraint

M

D",1': t
m=l

This constraint may be incorporated into the maximisation by formulating the dual prob-
lem (section2.2.9.2), in which the constraint is introduced into Q[n) (6.29) through the
Lagrangian multipliÊr 'yt¡. The problem then becomes one of maximising the uncon-
strained function

LÍ? :_i 
1r"*",,T,) å 

,Í:,,)' * r,, (, ä"ft,) (6 s2)

Maximising this with respect to zrj*) gives

s

IrÍl'")'
s=1

+(^) - 
1

t, atlr, (6.33)
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where Aji) is the estimate of the measurement probability for target rn at time ú¿. Sub-

stituting (6.33) into the constraint (6.31) and solving for n, gives n, - ,S and hence

î,Y)
1

s
,Íi'"

st
s=1

)' (6.34)

which corresponds to that obtained by Streit and Luginbuhl (1995). This procedure is

repeated for each of the ? measurement scans.

6.2.2.2 Target State Sequences

The target state sequence for each model rn is estimated by maximising QÍ)) (6.30) with

respect to X(-). This produces a set of T + | simultaneous equations for each target

model rn, and the solution of this set gives the unknov/n parameters defining the pdf of

the target states for that target. The target states are estimated from these parameters.

An alternative is to take the exponential of 8#) (Streit and Luginbuhl 1995). This

gives

"*p 
(8Í))) -- ç(m) ("1f,) tt [*,-, 

(*ÍT, l-ftl) fr 1,,-,,, (,f, l*Íï,))''t'''']

¡rÍT) (,,,1*Íï)) : "Ii (e{-,"r (,f:, l*Íi,))'Íi'""

i=l
T

where ,,fji) is the conditional measurement pdf at measurement time ú¿, defined as

"f:l) ¡'ÍT) (",, -fl,)]x g@) ("fi,) lI [ø,-, ("Íï,i=I
(6.35)

(6.36)
s=1

and c is a normalisation constant. The required estimatr f,(rn) is the value of X(-) that

maximises (6.35), where X(-) represents the parameters describing the pdf of the target

states. In general, an iterative algorithm is employed to solve this problem, and such

an algorithm is conceptually equivalent to a single target maximum a posteriori (MAP)

tracker. In the special case of a linear Gaussian system, this is equivalent to the fixed

interval Kalman smoother (Gelb 1992).

6.2.2.3 Linear Gaussian Case

For the special case of a linear Gaussian system, the estimated parameters are the target

state means. As the means are the maximum likelihood estimates of the target states for

Gaussian distributions, i(-) is in fact the estimates of the target states. Therefore the

target state sequences can be obtained directly for linear Gaussian systems.

The linear Gaussian target state and measurement pdf's for the target model rn aÍe
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defined as

U,r-r (xÍi)

,p@ ("1?) (6.37)

çr-,'t (zj,)

where N (p,X) denotes the normal or Gaussian distribution with mean ¡; and covariance

E.

Using the linear Gaussian models introduced in section 5.3.1.1, the above pdf's are

substituted into (6.30) and, maximising with respect to each *ÍT) , i : 7,2,. . . , ?, the

following symmetric tridiagonal system of equations is obtained for each target model.

(tÍf,-'* DÍi)) *Íi') - eÍï)*Íï) : ¡j-)-t*{-) (i : 0)

eiilr*f[l + (ofl, + oji') *ji' *Íiì .Í?) i:L,2,...,j.-L

- eÍil,'*ÍT), + nÍi)"Íî) (i:T)
(6.3s)

where

s

"Í:l
*Íï)

) -,,rr (*Íf,, tÍi,)

) -,v (rfll"f:1, aÍi))

) -,rr ("Íi'',"Íi), RÍï'"))

_ BÍ7

aÍï) : aÍ:l-' + f rÍT,'r' HÍi'")tnÍï,s)-l¡(rn,s)

eÍï) : rf-rrql-)-1'
s

.Í?) : D rÍi,'r' HÍï,') r pjm,s)-l r(s)
s=1

DÍi) : Fj-)rqt-r-'FÍï)

?,

"ÍT)

i:0,1,...,7-L

i:0,1,...,7-7

T21

T21

(6.3e)

't,

This result differs from that of Streit and Luginbuhl (1995) in that they did not explicitly
weight each measurement by the inverse of its covariance because, being from the same

sensor, all their measurements had the same covariance. The remainder of this section
introduces a composite measurement model for measurements from dissimilar sensors

(Krieg and Gray 1996a), a problem not addressed by the PMHT algorithm.

For each target model, a single composite (or synthetic) measurement model for each

targetl is introduced as

,Í? : HÍi)"Íl)+vÍl) m:r,2,...,M, i:r,2,...,T (6.40)

lThis represents the single measurement model in the formulation of Streit a¡rd Luginbuhl (1gg5).
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where ij-) denotes the composite zero mean Gaussian measurement noise with covariance

ÉÍï).

The composite measurement matrix ftji) *aps the state space of the target model

onto a composite measurement space that contains all possible measurement types from

all sensors. It is determined by forming the matrix l"ÍÏ't't, HÍ:'')',... , HÍï'")t]t und,

using Gauss-Jordan or similar methods, simplifying it into reduced row echelon form.

The zero rows of this simplified matrix are removed, leaving the composite measurement

matrix flÍ?. The linearly independent rows of this matrix each contain a single one; all

other elements are zero. Therefore every (independent) type of measurement will appear

once in the composite model.

Introducing the relationship nÍÏ'") - HÍÏ'')Hji) fo. all s: L,2,...,,S, the nùeu,sure-

ment transformation matri,r for sensor s and target *, HÍ?'"), is defined as

HÍi,') : HÍï,")ÉÍï)t (HÍ-)rir-rr) 
-1

(6.41)

Given the aforementioned structure of Hli), the inverse in the above equation not only

exists, but it is always the identity matrix. Therefore (6.41) is simply

HÍï,") _ HÍï,,)ÉÍi)t. 9.42)

afi) ana "ji) i" (6.39) may now be re-written as

AÍl) : aÍïl' + ÉÍï) rRÍ'Î?¿)-lÉ(rn)

.ÍT) : tlf-) rpl-l -' ZÍ:)

where the composite measurement ZIT), ana its covarian.. ñj-), are defined as

zÍ? : ñÍï) t ,Y")' HÍï'")r*irn's)-rr(s)
s

s=1

s

D "Í: 
rY FÍï'') t nÍi,s)- 1 ¡ (rn,s)

s:1

(6.43)

(6.44)

(6.45)

-1

By way of example, consider the radar and optical measurements in section 3.3.3

and, in particular, the measurement and covariance matrices in (3.11) and (3.f2). The

composite measurement matrix for this example is

10000
00100m)

H 00001
00000

0

0

0

-1

ú¡ (6.46)
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i.e., the same as HÍï't), and from (6.42)
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(6.47)

ÉÍï,')

1000
0100
0010
0001

:lHf-,') : 11"10
0

1

0

0

Then, denoting the composite measurements by -, the composite measurement vector is

-(m\D\ t :otí

ñy)
=(^)"ti

1),

,y,,)'ñÍi)

o$tl -z r5¡l + u[*,2)' o{zl -' rtÍ?)

o[r) -r rl!) + u[^,2)' o{2) -2 eQ)

aÍ*,')' o$) - R::)

a[*;)' ott.'- 4:)
ñlT)
- (^)
R,.

(6.48)

(6.4e)

and its covariance nli) is a diagonal matrix, where the elements on the primary diagonal

are

(

(

uf,r)' o{t) -2 * ,[m,z)' olÐ -'

af,Ð' o{t) -z * ,tm,z)' o5Ð -,

('Y'"' og) -')

('Í:'"' oE) -')

)-'

)-'

This is similar to the data compression mentioned by Willner et al. (1976), i.e., for a single

dimension measurem ent, z¿, - RL (or'l-'r1'l ¡ qQ)-'"1?,) and R¿, : (ø(1) -z ¡ o?)-r)-t.
The tri-diagonal system of equations of each target model (6.33) may now be solved

for the unknown target states using a fixed interval Kalman smoother (figure 6.1) with
the appropriate composite measurement model (see Appendix B).

This completes the M-step.

6.3 Linear Gaussian msPMHT in Iterative Form

The msPMHT algorithm is based on the EM algorithm and is therefore iterative. This
section completes the derivation of the msPMHT algorithm by presenting the linear Gaus-

sian version in its iterative form.

Assume that the batch measurementZT is available, and initial values for the measure-

ment to target probabilities (fIT') and the target state sequences (XT') have been chosen.

The ' denotes the initial values for the first iteration and the results obtained from the
previous iteration otherwise. The algorithm is stopped when the likelihood function has
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Figure 6.1: Block diagram of the fixed interval Kalman smoother
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converged to a constant value.

First the target assignment probabilities
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(6.50)

(6.51)

(6.52)

(6.53)

s,(*) - o(-)utT - ' tyltr,

(6.54)

"[!'N (,11) ¡[-,")*1-¡', RÍi,'))

DY='nÍ!' N ("f' 
I 
Hir'')*(r)', RÍl'')

^9

I"Íï'''
¡=1

^ (m\ -(rn\
Yìolío : xìo '

PÍil, : rÍi)
and the forward recursion, or filtering, proceeds for i: I,2,...,T as

pÍß,_, : FÍ:lpÍïìr,,_,FÍ:ì'+ qÍiì

wÍï) : pÍiì_, t4?' (rfl, pÍi/,_, ÉÍi)' + n[-r¡ -t

PÍi),: (t - *iï,Éfï)) pÍï¿_,

rjil : rÍïlrj:lp,_, awÍï) (ul:, - HÍï)FÍ:liÍ:ì,,,_,) .

The backward recursion, or smoothing, commences with "Íî) 
: iÍi]), u"a

and it continues for i : (? - 1), . . . ,1,0 as

(m\ ^(t*)1,,, : v)fl + pÍiìrÍi)'pÍïìþl 
þf3 - Ffr)rÍiì)

>Íï) : pÍiì + pÍli¿FÍï)'pÍilþl ("flì - rÍï1',) pÍïlolrfl,pÍil

..(rn,s)wt;

are computed for i:1,2,...,7, m:7r2r...rM and s :1r2r...,,S. Next the target

measurement probabilities

*(^) - 
I

,tti - S

are updated for all m and i. The composite measurements and their covariances are

computed for each target model using (6.45) and (6.a4), and these are used in a fixed

interval Kalman smoother to obtain the state estimates.

The fixed interval Kalman smoother is implemented for each target rn: L,2,. . ., M æ
follows. The intermediate state variaUtes yjîl and their covariancer PÍï¿ are introduced

to represent the filtered estimates obtained from the forward recursion of the smoother.

They are initialised as

rvhere >i-) d.notes the state estimate error covariance for target model rn at time ú¿.

The state estimate error covariance is included for completeness only, it is not required
for estimating the target states.
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This algorithm is summarised in figure 6.2
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Figure 6.2: Block diagram of the iterative linear Gaussian msPMHT algorithm

6.4 Asynchronous Sensors

The restriction of a single measurement from each sensor in each measurement scan cân

be lifted, allowing any number of measurements, including none, from each sensor in each

measurement scan.

As mentioned in the asynchronous problem formulation in section 5.4, the main change

is in the indexing of measurements and target assignments within each scân. Therefore

the previous development of the msPMHT algorithm for simultaneous measurements also

holds for the asynchronous version of the algorithm, provided the appropriate indexing

changes outlined in section 5.4 are applied. Given this similarity, only the results of the
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asynchronous algorithm under linear Gaussian assumptions are presented. These results

are easily translated for more general non-linear and/or non-Gaussian formulations.

The target assignment probabilities and the measurement probabilities for the asyn-

chronous version of the msPMHT are given as

rfi'Y ("5't F¡[-'')*1-¡', RÍï'')
(6.55)

DY=, nP' N (rfl' 
| 
¡ir'')*[r)', P(n'')

n\

-(^),, t;
1

D,*'') (6.56)
Tl,t.

where the changes have been in the indexing of the measurements and target assignment

probabilities.

For a linear Gaussian system, the states of each target are estimated using a fixed
interval Kalman smoother with the composite measurements and covariances

n\

"Í? 
: ñÍi) t ,Í:o) HÍl'')r*irn's)-tr(r) (6.57)

r=1

r=1
n4

r=L

-1
ñfi D rÍ: rY nÍï'") t RÍï'")-' HÍl',) (6.58)

where again the difference between the synchronous and asynchronous msPMHT algo-
rithms is in the measurement indexing. Note that the sensor providing each measurement
is known and determines the parameters of the measurement model.

Using the equations (6.55), (6.56), (6.57) and (6.53), the iterative linear Gaussian
asynchronous msPMHT is as illustrated in figure 6.2.

6.5 General msPMHT

The general multi-sensor Probabilistic Multi,-Hypothesis Tracleing algorithm (Krieg and
Gray 1996a) provides multiple sensor models for each physical sensor, allowing the alge
rithm to adapt to changing sensor operating conditions. The missing data now consists of
target assignments, as for the msPMHT, and measurement to sensor assignments. These

sensor assignments are estimated along with the target assignments and target states.

The development of this algorithm is a generalisation of the msPMHT algorithm pre.
sented earlier in this chapter. It follows from the the general multi-sensor multi-target
problem definition in section 5.5.
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6.5.1 General Observer Likelihood Structure

As for the msPMHT, the observer states are estimated from the observer likelihood or

probability (6.1). However, the introduction of the sensor assignments (5.19) has changed

the observer structure (5.18) from that used in the msPMHT (5.6).

The probability mass functions of the sensor assignments are required to complete the

observer likelihood function. Let {rf) denote the probability that a measurement in the

scan at time ú¿ is produced by the sensor model P, i.e.,

{,9) : n (¿Íl' - o) (o be)

for all measurements from the same sensor set (physical sensor) in the scan at time

t¡. This probability is referred to as lhe sensor nl,easuren'Lent probability,, and it is the

expectation of the fraction of the total measurements from a sensor set at ú¿ that are

produced by a particular sensor model p from that sensor set. Therefore the collection of

sensor measurement probabilities over all batch times is denoted

Er :[€,,,€,,,...,€,,], Ër,= [eÍl), €Í?),...,€,1']t. (6.60)

The parameter {rf) defines the distribution of fji) and, because the sensor assignments are

assumed to be independent within measurement scans, the pmf's of the sensor assignments

in the scan at time f¿ are defined as

v(L)(rq) = p (1, : [,j], 
,,ú:),.. ., ¿Í:,,,]') : g r,f, lo:,Í;, 

. (6.61)

Assuming the sensor assignments are statistically independent across measurement

scans, and the target states (Xt), the target assignment. (Kt) and the sensor assignments

(L") are all statistically independent, the conditional probability of the scan observer at

time ú¿, i : I,2,.. .,7, (6.10) is now

p (o,, lo,,-,) = v(xl (X,, lX,,-,) v{xl (k¿,){'(L) (l¿,). (6.62)

The conditional measurement pdf for measurement 
"l;) 

ir now defined as

p (rÍl) 
I 
o',) = p (rf) 

| 
X,,,k,,,1,,) : ç@'ù ("fl' 

| 
*Íl') |,=ii,

where the dependence on the sensor assignment is now explicit. (Compare this to (6.12)

rvhere implicitly ljl) : s¡
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(6.63)

Similarly to (6.16) in section 6.1, the joint pdf of the measurements and the batch
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observer is given by

p (z',ot) = p (z',x' ,K', Lt) :

6.6.2 General msPMHT Algorithm Development

The target state estimates i" are obtained by maximising the joint pdf or observer

Iikelihood (6.64) with respect to X?. Again this is treated as a missing data problem, but
with the complete data now comprising the measurements Zr, targel states X", target

assignments KT and the sensor assignments L". In this case, the missing data is the

target and sensor assignments, K" and L". The target states, target assignments and

sensor assignments are all estimated using the EM algorithm.

The general msPMHT algorithm development is similar to that of the msPMHT in
section 6.2. Therefore only the key elements that differ from the previous development,

and the results, will be presented.

For the general msPMHT, the auxiliary function is

e = e (tt, E',x'l rt', E"', x"') :
t D [loep (z',x, ,K, ,L, : u", e")] o (*t, L, lzr,xr' : rrr', =t') (6.65)
KT L?

where the dependence is nov/ on both fI" and E".
The assignment probabili,ty, ,Í:'o'') , represents the probability that the rth measure-

ment in the scan at ú¿ was produced by sensor model p and originated from target m. It
is defined as

rf) ç(ù ç@,nl uli)
(6.66)

("Íí'

This differs from that for synchronous measurements (6.16) in only the measurement

pdf's, because the target state pdf's have not been affected by the generalisation.

..(^,p,ut¡ r "Íï)
(D,Y=rDuest"i "t! ¿f,t çø"

Note that not all combinations of measurements and sensor models are possible, i.e., each

measurement may only be assigned to a sub-set of the sensor models. The assignment
probabilities for the illegal combinations are, by definition, zero, i.e.,

,Íl) 
| "5''

uf't,') -o forpf g(') (6.67)
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where S(') is the sensor set of the sensor associated with the rth measurement in the scan

at time ú¿.

Each element of the summation in the denominator of (6.66) *uy be viewed as either

of two double finite mixtures of measurement pdf's. The first of these interpretations is a

fi.nite mixture of measurement probabilities for each target model, where these measure-

ment probabilities are finite mixtures of measurement probabilities for each sensor model,

i.e.,

E@) çb,u) ("f1, 
| "1r¡

*(p),t t;

Mt
P=l

(6.6s)

The alternative is a finite mixture of measurement probabilities for each sensor model,

where the measurement probabilities are finite mixtures of measurement probabilities for

each target model, i.e.,

,I."-,*,':'li"n(^ø(zl') l"fr')] ' (6'6e)

Rewriting the denominator of (6.66) as (6.68), the target assignment probability ulTr),
introduced in section 6.2.1 on page74, can be obtained, i.e.,

,f' : \, ,f'''')
P€S(c)

The EM auxiliary function for the general msPMHT becomes

M TM

r
(6.70)

Similarly, the sensor assignment probabiliúy, denoted nÍ!'') , is defined as the probability

that the rth measurement in the scan at ú¿ wâs produced by sensor model p. Using (6.69),

it is given as

Mt
m=l

ul^'o'')aÍo,n) (6.71)

c : I tosøØ ("fí') + t Iror¿r-r (xÍi' l"fll)v=l i=l m=l
TMnti

+ t t t I lrog",(ï) * Iog€,9) + los((-,r) (,f1, 
| 
-fl,)] u!^'n''¡'

i,=7 m=l r:1 p€S(r)

(6.72)

where uf^'o'')'denotes the assignment probabilities calculated using ¡1', ¡?' and ET'.
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This auxiliary function can be split into 2T * M independent sub-functions, i.e.,

TTM
Q:>,4ÍP + taf:) + I ag) (6 23)

d=l i,=l m=L

where

M.nti

8ÍP: I (t"r "Y')t t uf,'''')' i:7,2,...,7 (6.74)

(6.75)

(6.76)

(6.78)

ln:I r=1 p€,5(¡)

M

M:L
T

qÍ?:Í f (.re,Î')
r-1 p6s(c)

Drf,or)' i:I,2,...,7

eX) :togE@) ("ff,) . 
Ð 

bsþ@) ("Íï, l"flì)
Tn\

n'¿:7r2r..., M

and the additional ? sub-functions are a result of the inclusion of the sensor assignment

probabilities.

Using (6.74) and the constraint in (6.31), the target measurement probability estimates
become

+(^) 
- 

'' flti

ni,, :;t T ,f,o,,)'. g.TT)
"' r=1 p€5(")

Comparing to that obtained in the msPMHT (6.34), the scale factor has changed to reflect
the number of measurements from the asynchronous sensors, and the summation includes
all the sensor models allowed for each measurement.

The estimation of the sensor measurement probabilities commences with the constraint
that each measurement must be assigned to exactly one sensor model in the sensor set

associated with that measurement, i.e.,

+ D t f sl^'n''¡' log(('n'r) ("fl' 
| 
*Íï')

i=l r=1 p€S(s)

I €,1o): r
pçg(s)

for each sensor set (physical sensor) providing one or more measurements in the scan at
time ú¿. Any sensor sets that do not provide any measurements in the scan are ignored be-

cause the associated sensor measurement probabilities are not required for the estimation
process. Using this, and the auxiliary sub-function (6.25), the dual function

r- | e,9)
,'(3) -Lt. Ë f ('"rE,Î') f,Í:'o'r'+I ,P (

r=l p65(c) m=l , \ P€.S(s)

(6.7e)
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where ! denotes the summation over all sensor sets that provide one or more measure-

89

I

ments at time ú¿, is maximised with respect to {rf). This gives the estimate

uf,'n'')' (6.80)

where nrq"1 isthe number of measurements from the sensor set 5(') at time ú¿, â,nd Z[l is
-t. !t

the set of measurements in the scan at ú¿ from the sensor models itr 5(s) . If. n"<o is zero,

i.e., no measurements from a sensor set in a particular scan, the correspondiirg sensor

measurement probabilities are by definition zero, and (6.80) does not hold.

Similar to the msPMHT (section 6.2.2.2), the target state estimates X" may be ob-

tained by maximising

Iù:I Y $St; ,1tr_(sr L z-¿zìi' rez@) m=l

: ( i Ð r!,or)' ¡('n,n)rp[rn,r)-r ¡ff,)
\r=r pe5(,) /

."p (OÍ))) :4,@) ("ff',) il
frt' 

(*Íï' l-fll) I,.+", 
(Çt^''t ('f'l*Íi'))''t'"'"'I

T

i,=l

(6.81)

For linear Gaussian systems, this is again equivalent to estimating the target states

by using a fixed interval Kalman smoother. The only difference to that in section 6.2.2.2

is in the composite measurements and their covariances, which are now given as

nti

"l? 
: ñÍï) I l rf'''')' ¡@'n)r *lm'n)-r r(r)

r-1 pçg(")

(6.82)

(6.83)

The main difference between these and those of the msPMHT in (6.aa) and (6.45) is the

dual summation over all measurements and possible sensor models, instead of just over

the measurements.

Consider a single sensor with multiple sensor models that differ only in their measure-

ment noise covariances For a nominal sensor measurement noise covariance Rj-), the

meâsurement noise covariance for each model may be expressed as

RÍï") :61-'r)p(-).

RÍÏ

Substituting this into (6.82) and (6.83), the composite measurement and its covariance
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may be written

and

*(*) - 
1

tt t,' Tlt.vl

nti

D t uY'P'r)
r=1 p€S(,)

-(m\zi;'

fr(rn) - RÍi)
"úi 

D:lrDpesr"r'f^'n'')' 1ç(m'P¡-t

which is equivalent to that obtained by Rago et al. (1995a) for their homothetic PMHT
gating. Therefore, homothetic PMHT gating is a restricted case of the general msPMHT

algorithm.

The msPMHT algorithm for asynchronous sensors can be obtained from the general

msPMHT by allocating a single sensor model to each physical sensor. Under these con-

ditions, the sensor model summation is only over one model and the sensor measurement

probabilities revert to unity, effectively removing both from the formulation.

6.5.3 Linear Gaussian General msPMHT in lterative Form

In similar fashion to the msPMHT (section 6.3), the general msPMHT algorithm is pre-

sented in its iterative form, as illustrated in figure 6.3.

Assuming that the measurements (2") and initial values for the target measurement

probabilities (fI"'), the sensor measurement probabilities (Et') and the target states (X?')
are given, the target assignment probabilities

,y,o,,
rf)' ¿@)'y (rfl, I 

Hl*,ù*(^)', RÍï'o))

Ðy=rfsçsr"r r[ù'¿(")'y (rfl' I Hle'ù*Øt, Rf'"))
(6.84)

are calculated for i:Ir2,...rT,m:1,2,...,M and r :Lr2r...rtut;. This is followed

by the target and sensor measurement probabilities

t M

\'f'o't
\ m=\

(6.85)

(6.86)
- -(srt¿;

Using (6.32) and (6.83), the composite measurements and their covariances are computed

for each target model, and the target states are estimated by using a fixed interval Kalman
smoother for each target model.

This sequence is repeated until the likelihood function converges to a constant value.
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Figure 6.3: Block diagram of the iterative linear Gaussian general msPMHT algorithm
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Cueprpn 7

Multi-Sensor Probabilistic Least

Squares Tracking (msPLST)

The multi-sensor Probabilistic Multi-Hypothesis Tracking (msPMHT) algorithm (chap-

ter 6) solves the multi-sensor multi-target problem by estimating both the target assign-

ments and the target states. It does this indirectly by estimating the parameters of the

underlying probability density functions of the target states and the probability mass

functions of the target assignments. To ascertain which parameters to estimate, some

knowledge of the underlying distributions is required. Therefore, either the distribution

must be known, or it must be approximated by some other appropriate function. The

assumed distribution must be a reasonable match with the data for satisfactory tracking

performance.

If the probability distributions and their parameters are known, the msPMHT provides

accurate estimates. However if the assumed distributions or their parameters are incorrect,

the performance of the msPMHT will be degraded. The alternative is to consider an

estimator that is not dependent on the probability distributions or their parameters.

Such an algorithm will probably not perform as well as the msPMHT if the distributions

and parameters are known, because the msPMHT is using more information. However, if
the distributions or their parameters are unknown, this type of technique has the potential

to outperform the msPMHT.

With this in mind, a new algorithm, the multi-sensor Probabilistic Least Squares Tfack-

ing (msPLST) algorithm has been developed (Krieg and Gray 1997a). This algorithm

uses the same problem formulation and models as the msPMHT (chapter 5), but instead

of using maximum likelihood techniques to estimate the target assignments and states,

it uses least squares. Least squares estimation, and therefore the msPLST algorithm,

assumes no knowledge of the probability distributions of the variables being estimated,

using only the errors between the measurements and the predicted target states.

The concept of least squares tracking will be introduced through a simple tracking
problem. This will be followed by the msPLST derivation for both synchronous and

93
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asynchronous multi-sensor measurements.

7.L Least Squares Estimation for Mixed Models

x X

X

X

x

X

¡(t)

1
x

X

X

x

x

X ¡(z)

t-+

Figure 7.1: Fitting points to straight lines

Consider the tracking problem illustrated in figure 7.1. Here the two sets of noisy
measurements over the times tt,tz,.. .rtT,

7G) :

7Q) : o\Zit'¡Z (2)
t2 t"')

,Íl),"Íl),.. ,"Í:))
(7.1)

(7.2)

(7.4)

"Í:)l

are to be fitted to the two unknown straight line target trajectories

¡(t) :

¡(z) :
þÍ1, *Í|, , *Í;r]

l*Íi',*Íí',' ,"Í?]

*Íl':rn(t)¿n+c(1)

*Íi) : ,¡¡?)t¿+ c(2)

where

"Í!) 
: xjf) + noise (2.3)

and / : {m(1),s(1),m(2),"(z)} is the set of unknown parameters specifying the target
trajectories.

If the target assignments are known, i.e., Z(l) contains only the measurements asso-

ciated with target X(1), and ZQ) contains only those associated with X(2), the unknown
parameters of the two straight line trajectories are determined by minimising the cost

function

X

x

Ë (¿l')'+É (.r:')'



7.I. LEAST SQUARES ESTIMATION FOR MIXED MODELS

where .fi) ir the error term between a measurement and the target trajectory at that

time, i.e.,

,lT) : "Í? - (m(-)rn + c(-)) (7.5)

If the noise on the measurements varies, for example if the measurements originate from

different sensors, each squared error term in the sum may be weighted by the inverse of

its noise covariance. This is known as weighted least squares.

In practice, the target assignments are generally not known, i.€., we are only given

7: 70)¿7Q) which contains measurements from both targets. Therefore both the target

assignments and states have to be estimated to solve the tracking problem. Often this.

problem is not trivial because, as shown in figure 7.L,it is not always obvious to which

target each measurement belongs, particularly if the targets are close or crossing. To

solve this problem, a set of unknown assignment weights, olT''), are introduced, one for

each possible measurement to target assignment. These weights represent a (normalised)

confidence that the rth measurement at time ú¿ is associated with the target m. A, weight

of one implies that the measurement definitely originated from the target, while zero

implies that it did not. It is these weights or soft target assignments, and not the actual

hard assignments, that are estimated.

Allowing simultaneous measurements in a measurement scan, the error term of (7.5)

is redefined as

,ÍTn) : 
"l? - (m(-)rn + c(-))

95

(7.6)

where r denotes a particular measurement within the measurement scan. Using this

redefined error term and denoting the number of measurements in the scan at time t¿ as

n¿r, the least squares criterion for this simplified tracking problem can now be expressed

as

arg móln st^t)2 ,(^''¡z (7.7)

with the constraint that each measurement must be assigned to exactly one target tra-
jectory, i.e.,

2

DoÍl'"':t i:1,2,...,7, r:1,2,...,frt,
m=l

This problem cannot be solved explicitly because there is insufficient information, i.e.,

the target assignments are missing. Therefore, as in the msPMHT, an iterative approach

is implemented where, at each iteration, the target assignment weight estimates and the

target trajectory parameter estimates are updated using the values obtained from the

2nt¿Trtt
rn=l r=l i=\
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(7.8)

previous iteration.

In the following sections, this simplified example is generalised to the multi-sensor

multi-target tracking problem for simultaneous measurements from each sensor.

7.2 Formulation of the Cost Function

Central to the derivation of the msPLST algorithm is the development of a suitable cost

function that, when minimised, produces an estimate of the observer state.

From section 5.2, the observer is defined as

OT: [Oro,Orr,...,Orr] Or, = [Xr,,kr,]

where X¿, denotes the set of target state vectors at time ú¿, â,nd k¿, the target assignments

at time ú¿. As each measurement scan contains a single measurement from each sensor,

there are ,S measurements and therefore ,S target assignments in each scan. These target

assignments,

k,, = lt Í|),nÍ:r,. , kj:)] (7.e)

contain the target model numbers to which each measurement in the scan at time ú; is

assigned. These hard assignments are replaced by the soft assignments oÍ ') , i.e., the

target assignment weights, introduced in the previous section (section 7.1).

The estimate of the observer is denoted

o" a arsli,n t (Or,zr) (7.10)

where "I represents the cost function. The parameters explicitly indicate that J is a
function of the observer and is dependent on the batch of measurements. In the previous

example (section 7.1), the cost function (7.7) is a function of the parameter set ó, i.e.,

the observer, and is also dependent on the measurements in 7$) ¿n¿ 7Q).

Consider the multi-sensor multi-target tracking problem using synchronous measure-

ments from each sensor, as formulated in section 5.3. The cost function will obviously

contain the errors between the measurements and the target state estimates, as in (7.7).

However, the target state at each time cannot, in general, be determined uniquely from

the other states, i.e., there is some uncertainty in the target's dynamic model. Therefore

the errors between the target model and the state estimates must also be considered.

The problem formulation in section 5.3 allows for dissimilar sensors, and subsequently

the noise contributed by the measurements from each will differ. Therefore some mea-

surements will be more reliable (contain less noise) than others and will have the potential
to provide more information. To ensure the more reliable measurements have a greater

influence on the estimation process, a weighted least squares algorithm is used, where the



7.2. FORMULATION OF THE COST FUNCTION 97

squared error terms in the cost function, e.g., ,!T')' in ç7.7¡, are scaled by some weight-

ing function. For linear systems, these weighting functions will simply be the inverse of

the appropriate noise covariances, as they provide a quantitative measure of the noise or

uncertainty in the corresponding measurements or variables.

The general measurement model in (5.8) can be rewritten as the finite mixture

M

,Íl : D"fÐ nL-,') (ú¿, *Íï), "Íï'')) (7.11)

(7.13)

(7.16)

m=L

where the mixing parameters rl^") are either 0 or 1, and they must sum to unity for each

measurement. Therefore they act as hard assignments, assigning a single target model to

each measurement.

The hard assignments rY'") may be replaced by the soft assignments or target assign-

ment weights oji'') introduced in section 7.1, i.e.,

M

,l!:Ð"Í?rrnt^,ù (¿,"Íf),.rÍï'")) . (7.r2)
m=l

In this model, each measurement is apportioned to each target, where the value oÍ-'") i,
the fraction of the measurement from sensor s at time t¿ that is apportioned to target rn.

Therefore, as each measurement is assumed to originate from a single target, the target

assignment weights for each measurement must sum to unity, i.e.,

M

D
rn=l

)_1

':"Í! -HÍï'')"Íl)..Íï''

oÍ7'"

The cost function consists of a sum of weighted squared errors that are to be minimised,

e.g., the cost function in (7.7). Using the general measurement model of (5.11), the

difierence between the measurement zfi) ana the state of target rn at time ú¿ is

,lTÐ : ,Í:) - ¡(rn,s) (rn,*Íï,, "f'')) (7.r4)

For a linear system, the measurement model in (5.15), with the Gaussian noise removed,

may be used. The error term then becomes

(7.15)

Using the finite mixture model (7.12), the sum of all weighted squared measurement errors

may be written

TSIvI

t I I "ÍÏ'")'rÍT") 
tRÍÏ'') -'uÍÏ'')

i=l s=l m=l
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The weight RÍ-'') is defined as
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(7.1e)

RÍi'") : E [.Íï'").Íï'','] - E lel-'"r] r l.Íi'','] (7.t7)

i.e., the measurement noise covariance of the measurements from target m and sensor s.

The error between the actual target states and those predicted by the dynamic model

are obtained from (5.7), i.e.,

,ÍT) :*Íï)- ¡rù (tt,"Í:1,*J:l) (7.18)

and the linear variation, derived from (5.13) with the Gaussian noise removed, may be

written as

(rn],
Ct.vl "Íï) - rÍïì"Íïl

for all 'i : L,2,. . .,7 and rn : I,2,. . ., M. The ¿ priori state estimates at time úe

are assumed known (section 5.2), and the error between this value and the target state

estimate at time ús for target rn is given as

,Íi):xjir-¡j-r (7.20)

The sum of all weighted squared state errors becomes

Mt ,1i''oÍïì -'r,lT) (7.2r)
TM

'Íi)"Íi)-'rÍP *It
'i,=L m:lm=l

where !li) it the covariance, or uncertainty, of the a priori state estimate at time ú¡.

The weight aÍï) is defined as

of)=EþÍï)'Íï''] -'þfi)] Eþfi)'] (722)

which represents the process noise covariance of target rn at time ú¿.

Therefore the cost function is obtained by combining (2.16) and (7.21), i.e.,

TSM

"¡ 
: I I D "Íi*)'.Íï'')tRÍï,s) 

-l.(zn,s)

i=l s=l rn=l
MTM

+ t'Íf)"Íi) -"Íï) + f I'Íï)'oÍïl-''Íl)
m=l i=l rn=l

(7.23)
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7.3 Development of the msPLST Algorithm

The cost function (7.23) must be minimised with respect to Xr to obtain the least squares

estimate of the target states. As for the msPMHT development (section 6.2), the target

assignments are unknown and can be treated as nuisance parameters.

An iterative least squares algorithm is used to estimate both the target assignments

and the target states. In this approach, initial values for the target states are chosen.

This may involve selecting initial target assignments and then estimating the target states

using these assumed target assignments and the measurements. These state estimates are

then used to estimate new target assignment weights, that are in turn used to produce

new estimates for the target states. These target state estimates replace the initial state

estimates, and the process is repeated until the value of the cost function converges to a

constant value.

At each iteration of this algorithm, new estimates for the target assignments and the

target states are chosen such that the cost function is minimised. Therefore the cost

function must decrease (or remain the same) at each iteration, and therefore it converges

to a minimum value (or possibly a stationary point).

7.3.L Target Assignment 'Weights

To estimate the target assignment weights, the cost function (7.23) must be minimised

with respect to the target assignment weights, given the most recent estimates for the

target states.

This minimisation is subject to the constraints in (7.13), i.e., each measurement must

be assigned to exactly one target. As in the msPMHT derivation, the constraints may

be included in an equivalent dual problem by using Lagrangian multipliers. This dual

function is given as

TSMttt
i:l s=l m=l

oÍ:,')'.Íï,") t nÍï,'¡ -t.Íï'") + t ¡ rÍi) 1

MI
rn=l

(7.24)
TS

r(a) - "Í?,)i:l s:l

where 7rf) tep..sents sth Lagrangian multiplier at time t¿, and the terms in (7.23) that do

not contribute to the minimisation have been omitted.

Minimisin g (7.2a) with respect to oj-'") yields the solution

(.Íï'"' t RÍï'') -'.Íï'') -1

ôÍi''l : (7.25)

DÍ=, (tÍl'"' 
t *Íl'"r -t tÍl'") )

where ãÍT') denotes the estimated value of the target assignment weight for target rn and

measurement s



To estimate the target states, the cost function J can be separated into M subfunctions,

each representing a single target model, i.e.,

M

J:ltffl where
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(7.26)

T

I'Íï)'oÍil-"Íl).
i=L

(7.27)

1 2 ,T -7

J#) : t t "Í?*)' 
rÍ?,')tRÍl'") -' rÍT,") + rÍPttÍf) -"Íf) *

m=L
TS

i=l s=1

The result of minimising each cost sub-function with respect to X(-) is a set of ? * 1

simultaneous equations for each target model rn: I,2,. . ., M, i.e.,

(tÍï,-' * DÍf)) *Íf) - eÍf)"Íï) : ¡l-)-t*{-) (i : 0)

(oÍ1, + oii') "fi' - eÍï)"Íiì : 
"ÍT)

Bfïl L

- eÍî1,'*Íî1, aÍ?*ÍT)

*Íïl +T

rÍï)'o

+

aÍïl-'

.lT) (i:T)
(7.28)

where

AÍi)
s

+ ! oÍ? "" HÍ ") 
r 

Plrn's)- 1 5 
(rn's)

s=1
(^)-L
t;

i: t,2,. . .,7

i:0,1,...,T-l

i:L,2,. T

i:0,1,...,7-l

B ,n
t¡

s

I "Íi'")'HÍ:'")'
s=1

Ff-)rq(-l-tFÍ:)

(7.2s)

pj-,')-tr{')

whose solution gives the target state estimates.

This is the same set of tri-diagonal equations that were obtained for the linear Gaussian

msPMHT (see (6.3s) and (6.s0)), but with øji'")' replaced by at^'')2. Therefore the
composite measurement model introduced in section 6.2.2.3, i.e., (6.40), frây be used

here, with the composite measurements and their covariances defined as

s

ãÍ?) : RÍl) t oÍl'")rHÍi,') r*jrn,s)-tr(s) 
(2.30)

s=l

,HÍ1,",) 
(7.81)

/

(rn\cì'
ûl

DÍÏ)
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where HÍÏ'') is the measurement transformation matrix (6.42). Using the

the composite measurement matrix HIT) int.oduced in section 6.2.23, AÍ*)

(7.29) may now be written as

AÍi) : OÍ:),' + ÉÍï)rRÍ'?¿)-lÉ(n¿)

"Í?) 
: Él-)rPt-l-'ãt:)

(7.32)

and, as for the linear Gaussian msPMHT, the target states may be estimated using a

fixed interval Kalman smoother with this composite measurement model.

7.4 msPLST in Iterative Form

The msPLST algorithm may be conveniently expressed in iterative form.

Assume that the batch meâsurement (2") and initial values for the target assignment

weights @Í:')') and target states (Xt') are available. The'denotes the initial values

for the first iteration and the results obtained from the previous iteration for all other

iterations. The algorithm is stopped when the cost function has converged to a constant

value.

Thetargetassignmentweightsarecalculatedfori:L,2,...,7,m:1,2,...,Mand
,9 : 1, 2r... r,S, i.e.,

(7.33)

The composite measurements and their covariances are then computed for each target

model using (7.31) and (7.30), and these are used in a fixed interval Kalman smoother to

obtain the state estimates (see section 6.3).

This algorithm is summarised in figure 7.2.

7.5 Asynchronous Sensors

To facilitate asynchronous sensors, the restriction of a single measurement from every

sensor in each measurement scan is lifted. The resulting algorithm development is based on

the asynchronous problem formulation in section 5.4, and it closely follows the derivation

of the synchronous msPLST algorithm presented in the preceding sections. Therefore

only the modified cost function and results are presented here.

As in the msPMHT, the key difference between the derivation of the synchronous

and asynchronous msPLST algorithms is in the indexing of the measurements and target

assignments within each measurement scan. This is reflected in the measurement models

and therefore in the measurement error terms in the cost function. The modified cost
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Figure 7.2: Block diagram of the iterative msPLST algorithm

function is given as

(7.34)

where .Í-'") i, defined as

,Í:,,) : ,Í:) - ¡(m,') (rn,*Íï,, "Íï'')) (7.3b)

and the sensor s that produced the measurement is assumed to be known (cf. (7.23) and
(7.14)). The linear error term (7.15) may be similarly modified.

TntíM

"r : D t t "Ífn)' rÍT'')tRÍï,') -' rÍ?,')
i=l r=l m:l

MTM
+ t "Íï)"Íf) 

-''Íi) + D I'Íï)'oÍ:ì-"Íï).
m=l i=l m:l
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The target assignment weights are given as

(.Íi,", 
-RÍï,') -'.Íï,",)

(7.36)

D,Y=, (.Íí"' 
t *Íí''l -'.Íl'") )

and the composite measurements and covariances, to be used by the fixed interval Kalman

smoother to estimate the target states, become

oÍ7,'r' É Íï'') 
t 

nÍ 7,') 
- r 

"t;)
(7.37)

oÍ7'' )

n\
ãÍ? : ñÍï) t

r=l

ñÍï) D "ÍT 
rD F Íï'") 

t nÍï,')-' HÍï'')
nti

r=L

-1
(7.3s)

7.6 Multiple Sensor Models

The general msPMHT (see section 6.5) provides multiple sensor models for each physical

sensor, and determines which is the most appropriate for each measurement. This allows

the algorithm to adapt to changing sensor operating conditions.

The msPLST formulation does not make any assumptions regarding the pdf's of the

meâsurements or target states. Therefore any variation in sensor models will only result

in a change to the weighting of the squared measurement errors in the cost function. To

achieve the desired minimum cost, any choice in these weights will result in the squared

errors with the smallest weight always being selected; the other squared errors being

redundant.

Therefore a generalised msPLST of this form would be of little practical use.
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Evaluation and Comparison of
msPMHT and msPLST Algorithms

The structures of the linear Gaussian msPMHT and the msPLST algorithms are very sim-

ilar, the major difference being the methods used to estimate the measurement to target
assignments. These structures and their differences are discussed, and the performânce

of the algorithms are evaluated and compared using both simulated and real data.

In this analysis, a linear Gaussian system is assumed and therefore only the linear
Gaussian msPMHT is evaluated. Therefore any reference to the msPMHT assumes the

linear Gaussian version, unless explicitly stated otherwise.

8.1 Comparison of Algorithm Structures

Both the msPMHT and the msPLST are based on the same multi-sensor multi-target
problem formulation (section 5). They are both iterative algorithms that estimate soft or
probabilistic measurement to target assignments simultaneously with the target states.

Within each iteration, the target states are estimated using a fixed interval Kalman
smoother. The key difference is the calculation of the target assignment probabitities in
the msPMHT and the target assignment weights in the msPLST. These assignments de-

termine the the composite measurements and covariances used by the Kalman smoother,

and therefore influence the target state estimation.

The target assignment probabilities and weights represent soft target assignments.

The estimation of hard assignments from these soft assignments is unnecessary, because

they contribute nothing new to the estimation of the target states, and it is the estimation
of the target states that is the primary objective of target tracking.

For a linear Gaussian system with known covariances, the estimated parameters of
the target state pdf's are the target state means. These are the maximum likelihood
estimates of the actual target states, and are therefore taken as the target state estimates

in the msPMHT. Using these same covariances as the weights for the squared errors in

105
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the msPLST would provide the same target state estimates as in the msPMHT if the

composite measurements and covariances rvere identical. (This is expected, as maximum

likelihood and least squares estimates are identical for Gaussian random variables.)

However, the composite measurements and covariances are not the same in both al-

gorithms because they depend on the soft target assignments. It is the calculation of

these target assignments that distinguishes the two algorithms. The msPMHT is based

on maximising the observer likelihood or probability and, as such, requires knowledge of

the appropriate probability density functions. It estimates the parameters (e.g., means) of

these pdf's, from which estimates of the target states and the soft or probabilistic target

assignments are obtained. The msPLST uses a least squares technique, where the total
weighted squared error between each measurement and the predicted target state is min-

imised. This does not require any knowledge of the underlying probability distributions.

8.1.1 Log Likelihood and Cost F\rnctions

The msPMHT algorithm's estimates are obtained by maximising the EM auxiliary func-

tion (6.27). This function is derived from the expectation, over all possible measurement

to target assignments, of the observer log likelihood function (see section 6.2.1) and, for

a linear Gaussian system, is writtenl

TNqM
e : -J6) - t t t uf,')' r!7,')rp(rn's)-1.(rn,r)

i=L r=L m--l
TN\M (8.1)

+ tt t ,y'')'bsi,f,)
f:1 r=1 rn:l

where

¡(x) - i,Íf,'¡Íi)-',Íf,* Ë i"Í:,'oÍIl-',ÍT) (8 2)
m=I i=l tn:l

arrd ejl'"), eji) ana tjfl) u.. the measurement errors, target state errors and initial target
state errors respectively, as defined in (7.15), (7.19) and (7.20).

./(x) contains the terms from the probability density functions that represent the dy-

namic evolution of the target states and contribute to the maximisation of the msPMHT
log likelihood. The last summation in (8.1) contains the relevant terms from the proba-

bility mass function of the measurement to target assignments. Collectively these contain

all the terms from the probability function of the observer that contribute to the max-

imisation of the msPMHT log likelihood function.

The summation over rn in the remaining term of (8.1) can be viewed as a finite mix-

lThose terms that do not contribute to the maximisation have been omitted.
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(s.3)

ture, where each term in the mixture represents the conditional probability of the rth

measurement at time ú¿, given the state of the rnth target. The mixing parameter s uÍ^'')'
represent the probability that the measurement originated from target rn, and therefore

this mixture represents the probability of the measurement given the complete observer,

i.e., the states of all targets and the measurement to target assignments. Therefore max-

imising (S.1), which is equivalent to maximising the joint probability of the measurements

and the observer, produces maximum a posteriori estimates, i.e., the msPMHT is a MAP

estimator.

The msPLST cost function (7.23), i.e.,

TntiM

J : ¡6) + t t t "Í?"'rÍT'')tnÍi'') 
-' rl7'')

'i:l r:L rn:l

is almost the negative of (8.1) above, and minimising it is therefore similar to maximising

(8.1). The key difference is the absence of the terms from the probability mass function of

the target assignments, i.e., the last summation in (8.1). This is equivalent to treating the

target measurement probabilities nti) u" constants, i.e., they take the same value for all

meâsurement ensembles. This is clearly not the case in practice and, since this represents

reduced knowledge of the system, one would expect a lower confidence in the assignment

probabilities.

This reduced confidence in the assignment probabilities is identified in the triple sum-

mation of the cost function (8.3), where the assignment probabilities â,re squâred. This

effectively reduces the fraction of each measurement that is assigned to each target, re-

sulting in an increase in the measurement noise covariance of the composite measurements

(7.31). This indicates a decrease of confidence in the composite measurement.

The summation of the weighted squared measurement errors in (S.3) over the M
target models can be viewed as the expectation of the squared measurement errors over

all target models, with the assignment weights "Í:') defining the probability for each

target model. Therefore the msPLST produces minimum mean squared error (MMSE)

estimates. Although this is usually equivalent to maximum a posteriori estimation for

Gaussian data, it is not so here because the measurements are modelled as finite Gaussian

mixtures, and the mode, i.e., the most probable value, and the mean of a Gaussian mixture

are not necessarily identical. Also in this case, the msPMHT and msPLST finite mixtures

are different because the soft assignments that act as the mixing parameters are different.

Therefore the msPMHT and msPLST algorithms do not produce identical estimates, even

if the mixtures are Gaussian.

The MMSE estimates are the state estimates that minimise the expected sum of the

squared errors bet'ween the state estimates and their true values, given the measure-

ments. Therefore, although not equivalent to the maximum o posteriori estimates of the

msPMHT, the msPLST estimates are in fact a posteriori estimates.
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8.L.2 Target Assignments

Comparison of (6.50) and (7.33) indicates that the reciprocal of the measurement error is

exponentiated in the msPMHT algorithm, whereas in the msPLST algorithm it is linear.

Flom this it can readily be shown that as the error increases, the relevant msPMHT
assignment probability will become smaller relative to that of the msPLST.

0l

t0

al

12 la ta ta I
4,
¿l

(a) Target 1 (b) Target 2

Figure 8.1: Target assignment probabilities and weights

Consider a two target example where the target measurement probabilities of each

target are identical. Assuming that all measurements originate from one of the two targets,
each measurement will be in the vicinity of at least one of the estimated target trajectories.
Let the distance between the measurement and the closest target be denoted e1, and
the distance between the measurement and the most distant target e2. Furthermore,
assume that these error distances are expressed in units of standard deviation (ø) of
measurement noise. Figure 8.1 shows the target assignment probabilities øj3'') and the
target assignment weights "Í7') for various ratios of e2 to e1. Note that because the
reciprocals of the measurement errors are linear in the msPLST, the aj-,"),s depend only
on the ratio ff and therefore are the same for all values of. e1. In the msPMHT, as the
reciprocal of the measurement error is exponentiated, lhe af'')'s are determined by the
difference between e1 aîd, e2. Therefore ,Y') is dependent on both the ratio ff and
the value of e1, and the multiple solid lines in figure 8.1 represent the plots of ,f,') fo,
el values of 0.2o, 0.5ø, 1.0ø and 2.0o. The oj-'")' .o.u. has also been included for
comparison.

It can be readily shown that when the distance between a measurement and the target
most distant from it, i.e., e2, is greater than approximately three standard deviations of
its measurement noise, the measurement's assignment to the closest target is more likely
to be harder in the msPMHT algorithm than in the msPLST. As this distance increases
relative to the separation between the measurement and the closest target, the likelihood
of the msPMHT assignments being harder than those in the msPLST increases.
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Figure 8.2: Example target tracks obtained from simulated measurements
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(a) Target assignment probabilities for
the msPMHT
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Figure 8.3: Example soft target assignments from simulated measurements

This explains the experimental observation that the msPLST is reluctant to make

hard assignments, whereas the msPMHT more readily does so. For example, consider the

simulated measurements from a radar and optical sensor and the resulting tracks shown

in figure 8.2, where the track of target 1 is shown as a solid line and that of target 2

as a dashed line. Radar measurements are indicated by +'s, and optical by o's. The

measurement noise covariance of the radar is ten times that of the optical.

Of particular interest is the msPMHT target assignment probabilities (figure S.3(a))

and the msPLST target assignment weights (figure 8.3(b)), where the assignments for the

radar measurements to target 1 are indicated by +'s and optical measurement assignments

to target 1 by o's.

During the period before the targets diverge, both target tracks are very close together

(figure 8.2). Therefore the measurements are often similar distances from both targets,

giving a ratio fi near unity. As shown in figure 8.3(b), many of the msPLST's assignments

are soft when this ratio is low. For the msPMHT, the assignments will be harder than
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those of the msPLST if this ratio is near unity and the distance e1 is large enough. As

shown in figure 8.2, this often occurs for measurements to one side of both target tracks.

For those measurements very close to one target track, i.e., e1 is very small, the ratio fr
becomes large, and the msPMHT assignments are again harder than those of the msPLST.

Therefore, in general, the msPMHT makes harder assignments, i.e., it is confident of
its choices of assignment, while the msPLST only becomes sure of its assignments once

the targets are well separated.

8.1.3 Track Error Covariance

The soft target assignments form the weights for the inverse covariance of the composite

measurement for each target (see (6.45) and (7.31)). This variation in composite mea-

surement covariance affects the tracking performance of the algorithms, i.e., the track
error covariance. For a constant measurement covariance, a target's TEC will be greatest

at either end of the batch of measurements, and it will approach a constant lower value in
the centre, provided the batch is long enough. If the composite measurement covariance

varies, the centre region of the batch will no longer have a constant TEC.
To illustrate, consider two crossing straight line target trajectories produced from

the measurements of two identical sensors. Figure 8.4 shows the different track error
covariance obtained for each of the two targets from such an example.

The minimum track error covariance possible from the Kalman smoother occurs when
those measurements associated with the target have an assignment of one, and all others
have assignments of zero. In this case, there is no uncertainty in which measurements

are assigned to each target. If the assignments take values between one and zero, the
track error covariance increases because, as seen from (6.45) and (7.31), the composite
measurement covariance increases. This additional covariance reflects the uncertainty in
the target assignments. The worst case performance occurs when all assignments are 0.b,
i.e., the algorithm has no idea which target of the two to assign each measurement to.

While the targets are well separated, the algorithms assign each of the two mea-

surements at each time to a single target each. The msPMHT makes slightly harder
assignments and this, coupled with the additional increase in the msPLST composite
covariance caused by squaring the weights, results in a marginally lower composite mea-
surement covariance in the msPMHT, and subsequently a lower TEC, as shown at 'A'
and 'B' in figure 8.4. As the separation between targets increases further, the difference
between the msPMHT and msPLST target assignments falls, and the TEC from both
become similar.

In this example, the msPMHT assigns all measurements in the region where the targets
cross to target 2. This absence of measurements assigned to target 1 causes a large increase
in the covariance of the composite measurement, and this in turn increases the TEC, as

shown at 'C' in figure 8.a(a). Conversely, the increase in measurements assigned to target 2
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Figure 8.4: Track error covariance

provides more data and subsequently a lower composite measurement covariance, causing

the decrease in msPMHT TEC shown at 'C' in figure 8.4(b). The msPLST behaves

similarly, but the changes in TEC are not so pronounced. There are tv/o reasons for

this. The first is that the softer target assignments of the msPLST will result in higher

assignment weights for target 1 and, even alloïving for the squaring of these weights, the

composite measurement covariance does not increase as much as that of the msPMHT,

resulting in a lower TEC. Conversely, the msPLST assignment weights for target 2 are

lower than the assignment probabilities of the msPMHT, and the decrease in composite

measurement covariance and TEC for target 2 is not as great as in the msPMHT. The

second reason is that one of the measurements in this region is assigned by the msPLST

to target 1. This has the effect of reducing the composite measurement covariance in
target 1 and increasing it in target 2.

The increase in msPLST TEC at 'D' in figure 8.4(b) is caused by a fall of 20% in the

assignment weight of a single measurement to target 2 at 3.6s, i.e., a reduction from 1.0

to 0.8. The squaring of this weight causes this fall to significantly increase the compos-

ite measurement covariance, hence the rise in TEC above the value obtained from the

msPMHT. The effect of the corresponding rise, i.e., 0.0 to 0.2, in the assignment weight

for target 1 is largely negated by squaring the weight when calculating the composite mea-

surement covariance. Therefore figure 8.4(a) shows no obvious evidence of the presence

of this assignment.

Therefore, for widely separated targets, the TEC of the msPMHT is marginally su-

perior to that of the msPLST. For close targets, the TEC depends on the assignment of
measurements to each target. Generally, for a particular target, the msPMHT TEC is
lower than that of the msPLST if most measurements are assigned to that target, and

higher if few measurements are assigned to the target.

Note that had equal numbers of measurements been assigned to each target in the

D
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vicinity of the point where the targets cross, the msPMHT would have produced a TEC
at 'C' similar to that at 'A' and 'B', by virtue of its harder assignments. The TEC of
the msPLST would have been significantly higher at 'C' than at 'A' because of its softer

assignments at this time. Therefore, under these conditions, the TEC of the msPMHT is

significantly lower than that of the msPLST.

8.2 Algorithm Initialisation

The msPLST and msPMHT both converge to the nearest stationary point, making ini-
tialisation critical. Therefore it is essential that the algorithm be initialised in the vicinity
of the global maximum (msPMHT) or minimum (msPLST).

Giannopoulos et al. (1996) introduced nxez,surenxent coaariance defl,ation for initialising
the PMHT algorithm. It attempts to smooth the multi-modal log likelihood function of
the PMHT by increasing the measurement noise covariances. The PMHT algorithm is

then run using these increased covariances and, because many local ma>cima have been

removed, the resulting log likelihood should be somewhere near its global maximum. The
PMHT is then re-initialised using the estimates obtained from this run, the covariances

are decreased and the algorithm is run again. This step is repeated until the covariances

reach their correct values.

This technique is used for initialising the msPMHT and msPLST algorithms. In each

measurement covariance deflation step, the algorithm is run until a (relaxed) convergence

criteria is achieved. To further smooth the log likelihood or cost function, the process noise

covariances are initially decreased, and then increased at each measurement covariance

deflation step. This reduces the manoeuvrability of the target, preventing it from following
individual measurements.

To commence this initialisation procedure, the me¿Ìsurements are randomly assigned

to the available targets.

The criteria for convergence, i.e., the magnitude of the change in the log likelihood or
cost function between iterations, is a trade off between number of iterations and the cost

error on algorithm termination. Little improvement in the track estimates is obtained
by an excessive number of iterations. In most examples presented here, a change in
log likelihood or cost between iterations of 0.01% for the initial measurement covariance

deflation steps, and 0.0001% for the final step, was found to provide reasonable results.

Table 8.1 shows the statistics f'or 700 monte corlo simulations using the same data but
different initialisations. These results, for well separated crossing targets (see figure 8.6),
show little change in the log likelihood and cost functions. Repeating the monte carlo
simulations with different data ensembles gave the results in table 8.2. Again the log
likelihood and cost functions do not widely differ, most the difference being due to the
different noise on each ensemble.
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rnsPMHT rnSPLST
mean
std dev

-166.0
2.60 x 10-5

37.6

6.87 x 10-14

Table 8.1: Log likelihood and cost function statistics for same data with different initial-
isations

msPMHT msPLST
mean
std dev

-166.3
4.2

37.4

7.9

Table 8.2: Log likelihood and cost function statistics for different data ensembles

Tables 8.3 and 8.4 show the average number of iterations at each measurement covari-

ance deflation step for a crossing target example and diverging target example respectively.

The couariance scale in these tables represents the scale factor applied to the measurement

covariances at each measurement covariance deflation step. The process noise covariances

were scaled by the reciprocal of these values.

Covariance scale 100.0 50.0 25.0 13.0 6.0 3.0 1.5 1.0 Total
msPMHT
(log likelihood)

mean
std dev

7.4
1.5

5.5
1.6

5.8
2.7

5.4
1.6

6.2
2.8

6.1
2.9

5.3

3.5

28.4

23.7

70.2
22.9

msPLST
(cost)

mean
std dev

5.9
0.6

2.8

0.4
2.7
0.4

2.9

0.4
3.1
0.5

3.1
0.3

3.3
0.6

5.3
2.t

29.7

3.1

Table 8.3: Average number of iterations at each level of covariance deflation for a crossing
target example

Covariance scale 100.0 50.0 25.0 13.0 6.0 3.0 1.5 1.0 Total
msPMHT
(log likelihood)

mean
std dev

4.0
6.9

3.0
4.2

2.9

3.3
L3.7
19.2

35.3
75.2

14.8

7.5

13.9

8.8
97.9
74.4

185.5

72.2

msPLST
(cost)

mean
std dev

10.3

2.0
6.8
1.6

7.7
3.3

8.3

5.2

6.9
3.4

7.0

5.2

6.4
4.5

9.5

8.3

63.0

11.8

Table 8.4: Average number of iterations at each level of covariance deflation for a diverging
target example

These results indicate that the msPLST performs more iterations in the earlier steps

compared to the msPMHT. Note that at least two iterations are mandatory to determine

if convergence has been reached. In both cases, the msPMHT performs about a third of
its iterations in the last step, compared to the msPLST which performs about a sixth

of its total iterations in the final step. This is because the msPMHT is more prone to
covariance errors when calculating its target assignments (see section 8.6), and therefore

more correction is required at this step, where the true covariance values are used.
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8.3 Computational Complexity

Both algorithms are computationally similar within each iteration, but in most cases

the msPMHT took significantly more iterations than the msPLST algorithm to reach

convergence. Examples from monte carlo simulations for five different two target two

sensor scenarios are shown in figure 8.5 for identical batch lengths. From these examples,

it can be seen that the msPMHT took between 2 and 3 times the number of iterations
to converge than the msPLST. The standard deviations are generally greater for the

msPMHT, indicating that the number of iterations in the msPMHT fluctuate more than
in the msPLST.

Example 1 2 3 4 5

msPMHT mean
standard deviation

70.2

22.9
t44.7
44.3

80.0
19.5

137.8

74.t
185.5

72.2
msPLST mean

standard deviation
29.L

3.1
50.7
t2.9

29.7

5.0

48.7

14.l
63.0
11.8

Ratio of means 2.4 2.9 2.7 2.8 2.9

Table 8.5: Comparison of total iterations for msPMHT and msPLST

The reason for the larger number of iterations in the msPMHT is obvious from the
example likelihood function in figure 8.5(a). This shows a series of plateaus that not only
slowed the rate of convergence, but also made it difficult to determine when convergence

had occurred. Note that not all msPMHT likelihood functions contain such obvious
plateauing. The msPLST cost function (figure 8.5(b)) gradually approaches convergence

without plateauing. The rate of convergence is therefore faster than for the msPMHT,
and it is also much easier to determine when the algorithm has converged.

I -t"O

o

I

U
s al6

!m 1â s
Iteration number Ite¡alion number

(a) msPMHT (b) msPLST

Figure 8.5: Example log likelihood and cost functions



8.4. EVALUATION USING SIMULATED DATA

8.4 Evaluation Using Simulated Data
115

A number of two sensor two target scenarios have been simulated. The performance of the

msPMHT and msPLST algorithms have been evaluated using 100 monte c¿rlo simulations

for each of these scenarios, and the average or mean results are presented with error bars

indicating the standard deviation of the results both above and below the mean value

of the estimated target tracks. In these examples, the measurements from sensor 1 are

indicated by x's and the measurements from sensor 2 by o's. Simultaneous measurements

from each sensor are assumed. Note that the illustrated measurements are examples from

a single ensemble.

Only the single dimension positi,on measurements and tracks are presented for clarity.

As for the AFKF, it is assumed that the dynamic behaviour of each target in one dimension

is independent of that of other dimensions, €.8., bearing is independent of range.

Only the target measurement probabilities for target t, nÍ,t', are presented as the

sum of the measurement assignments for both targets is unity in each measurement scan.

Similarly, the measurement assignment probabilities øjf'') and weights oÍ-'") also sum to

unity for each measurement, and therefore only rjl'") and ojl'') for r : !,2 are presented.

Similar to that of the msPMHT (6.51), the msPLST target measurement probability for

target rr¿ is defined as the mean of the target assignment probabilities at that time, i.e.,

(8.4)

where, in this case, ,9:2 denotes the number simultaneous measurements in each scan.

8.4.1 Crossing Targets with Similar Sensors

The msPMHT and msPLST algorithms are applied to the problem of tracking crossing

targets. In these simulations, the target moving in the direction of increasing position is

labelled as target 1, and the other as target 2.

The measurements in these examples arise from similar sensors, i.e., sensors with the

same measurement models. In practice, this may represent multiple measurements from

a single sensor, or measurements from multiple sensors of the same type.

Linear Gaussian dynamic and measurement models have been assumed in all cases.

8.4.1.1 'Well Separated Targets

The first example, whose msPMHT and msPLST tracks are displayed in figure 8.6, con-

siders two targets with significantly different velocities crossing the trajectories of each

other. In this scenario, the targets are well separated for much of the time. If this repre-

sents a two sensor system, the measurements frorn sensor l originate from target 1, and

sensor 2 follows target 2.
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Figure 8.6: Target track statistics for crossing targets using similar sensors
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Figure 8.7: Measurement to target assignments of target 1 and sensor 1 for crossing
targets using similar sensors
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Figure 8.8: Measurement to target assignments of target 1 and sensor 2 for crossing
targets using similar sensors
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Jt-

Time (s)

(a) msPMHT

té a5 o5 15

Time (s)

(b) msPLST

Figure 8.9: Target 1 measurement probabilities for crossing targets using similar sensors

As shown in figure 8.6, both algorithms produce statistically similar tracks, with almost

identical means and covariâ,nces. In the msPLST, the target tracks are restricted to a

few different trajectories, while the msPMHT produces a much more varied collection
of possible trajectories. The amount of this variation is related to the measurement

noise and process noise covariances. Obviously, if the measurement noise increases, more

measurements will occur further from the true target position, giving more possibilities

for potential target tracks. The higher the process noise covariance, the more the target
is able to manoeuvre, and therefore the greater the range of possible target trajectories.

Each of the target trajectories only differs about the crossing point, i.e., when the
targets are close and the assignment decisions are more difficult. When the targets are

well separated, both algorithms produce the same target assignments in all cases, as

shown by the coincident error bars in figures 8.7 and 8.8. At the point of crossing, the
uncertainty in the average msPMHT target assignments is greater than for the msPLST,

however as the targets begin to separate, the msPMHT is able to consistently make harder

more confident assignments than the msPLST. This is reflected in the target measurement

probabilities that, as shown in figure 8.9, remain at about 0.5, i.e., half the measurements

are assigned to each target on average, but in individual ensembles this varies when the
targets are close. The greater uncertainty in the average assignments of the msPMHT for
close targets arises from the harder assignments produced by that algorithm, i.e., although
the average is approximately 0.5, the individual values are close to one or zero.

Therefore, the tracking performance of the algorithms are similar when the targets
are well separated. In this case, both algorithms consistently produce the same relatively
hard target assignments, and therefore similar composite measurements for the Kalman
smoother. As the targets move closer together, the assignments of the msPLST become

softer while the msPMHT is more likely to maintain harder assignments.
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Figure 8.10: Target track statistics for close crossing targets using similar sensors
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Figure 8. 1 1 : Measurement to target assignments of target 1 and sensor 1 for close crossing
targets using similar sensors
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Figure 8.12: Measurement to target assignments of target 1 and sensor 2 for close crossing
targets using similar sensors
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Figure 8.13: Target 1 measurement probabilities for close crossing targets using similar
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8.4.L.2 Poorly Separated Targets

The above example was repeated, but with targets that are not as well separated. In
this case, as shown in figure 8.10, the variation in the target tracks is similar. (Note

the different scales from the example in the previous section.) However, the number

of variations in possible tracks increased significantly from that in the previous example,

including scenarios where the targets approached each other and then turned away without
crossing.

The target assignment probabilities and weights in figures 8.11 and 8.12 show that
when the targets are close, they are on average equally assigned to each target. Again
the larger error bars in the msPMHT assignments indicate that they are generally harder

than those of the msPLST. This is reinforced by the target measurement probabilities, as

shown in figure 8.13 where, although about half the measurements are assigned to each

target on average, the individual measurement probabilities of the msPMHT tend to be

closer to one or zero than their msPLST counterparts.

When tracking closely spaced targets, the msPMHT is less consistent with its as-

signments than the msPLST between data ensembles. This probabilistic behaviour is

consistent with that of a human operator.

8.4.2 Crossing Targets 'With Dissimilar Sensors

The previous two examples are repeated in this section, but using measurements from
two dissimilar sensors. In this case, the meâsurement noise covariance of sensor 2 is one

tenth that of sensor 1.
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Figure 8.14: Target track statistics for crossing targets using dissimilar sensors
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Figure 8.15: Measurement to target assignments of target 1 and sensor 1 for crossing
targets using dissimilar sensors
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Figure 8.16: Measurement to target assignments of target 1 and sensor 2 for crossing
targets using dissimilar sensors
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Figure 8.17: Target 1 measurement probabilities for crossing targets using dissimilar
SENSOTS

8.4.2.L 'Well Separated Targets

The tracks for well separated targets in figure 8.14 are similar to those obtained for

similar sensors, with the exception that the covariance in the track estimates for target

2 are much smaller. This occurs because, as illustrated in figures 8.15 and 8.16, only

the lower covariance measurements from sensor 2 are assigned to target 2, except near

where the targets cross. As the targets approach the point where they cross, most the

measurements from both sensors tend to be assigned to target 2, because many of the

measurements from sensor one are closer to target 2 than target 1. The lower noise on the

measurements from sensor 2 ensure that they â,re more likely to remain closer to target 2

than target 1. This is more evident in the msPMHT because of the nature of the Gaussian

probability distributions. The measurement probability for target 1 (figure 8.17) shows

how the fraction of measurements assigned to target 1 falls as the targets cross.

8.4.2.2 Poorly Separated Targets

To further evaluate the algorithms performance with closely space targets, the example

in section 8.4.L2 is repeated using measurements from dissimilar sensors. Again the

measurement noise covariance of sensor 2 is one tenth that of sensor 1.

In this case, as shown in figure 8.18, the performance of the algorithms is markedly

different. The msPMHT track for target 1 deviates significantly from the true target
position, indicated by the dashed line, when the two targets are very close. This occurs

because, as in the previous section, most the measurements are assigned to target 2

when the targets are in close proximity. This is illustrated by the target assignment

probabilities and weights in figures 8.19 and 8.20, where the assignments favour target 2

during this time. The msPLST assignments are softer and it tends to assign measurements

at this time to both targets, thereby assigning a sufficient fraction of the measurements
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Figure 8.18: Target track statistics for close crossing targets using dissimilar sensors
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Figure 8.19: Measurement to target assignments of target 1 and sensor l for close crossing
targets using dissimilar sensors
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Figure 8.20: Measurement to target assignments of target 1 and sensor 2 for close crossing
targets using dissimilar sensors
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Figure 8.21: Target 1 measurement probabilities for close crossing targets using dissimilar
SENSOTS

to target 1 to prevent the track deviating from its true trajectory. Figure 8.21 shows how

most measurements are assigned to target 2 in the msPMHT, but the msPLST assigns

approximately equal numbers of measurements to each target.

The initial large averâge deviation of the msPMHT track for target 2 (figure 8.18)

arises from the assignment of measurements from sensor 1 to target 2 in some ensembles

during this period, as indicated by the large error bars in figure 8.19(a). This possibility

exists because the target separation is small in terms of the error covariance of sensor 1,

and such assignments have the effect of pulling the estimated track of target 2 towards

target 1.

8.4.3 Diverging Targets with Dissimilar Sensors

The final simulated example involves tracking diverging targets with dissimilar sensors,

with the measurement noise covariance of sensor 2 again one tenth that of sensor 1. In this

example, both sensors are following a formation of two targets, which then split with each

sensor following a different target. The tracks obtained from the msPMHT and msPLST

algorithms are shown in figure 8.22.

The target assignment probabilities and weights (figures 8.23 and 8.24) illustrate how

initially the measurements are shared between the targets, but after divergence the mea-

surements from sensor 1 are assigned to target 1 and those from sensor 2 are assigned to

target 2. The larger error bars of the msPMHT assignments prior to divergence again

indicate this algorithm's tendency to make harder assignments, albeit to different targets

across the data ensembles. As the targets separate, these assignments become more con-

sistent over the ensembles. The target measurement probabilities in figure 8.25 illustrate

how the fraction of measurements assigned to each target differs between data ensembles

before divergence, but consistently approaches 0.5 as the targets separate.
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Figure 8.22: Taryet track statistics for diverging targets using dissimilar sensors
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Figure 8.23: Measurement to target assignments of target 1 and sensor 1 for diverging
targets using dissimilar sensors
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Figure 8.24: Measurement to target assignments of target 1 and sensor 2 for diverging
targets using dissimilar sensors
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Figure 8.25: Target 1 measurement probabilities for diverging targets using dissimilar
SENSOTS

8.5 Evaluation Using Real Data

The following examples use real radar and optical measurements collected using the test-

bed described in appendix A. The measurement noise covariance of the radar mea-

surements is generally approximately ten times that of the optical measurements. The

measurement update rates of the two sensors are such that simultaneous measurements

are rare. Since each measurement scan contains only the one measurement, the target

measurement probabilities, i.e., the nloì'", are simply the appropriate target assignment

probabilities, and therefore they are not presented for these examples. As there are only

two targets in these examples, the target assignment probabilities for target 2 are sim-

ply one less the target assignment probability for target 1, and are also not explicitly
presented.

For clarit¡ the target tracks obtained from each tracking algorithm are presented twice,

once with only the radar measurements and once with only the optical measurements.

This is necessary because the high density of measurements tends to obscure the detail if
they are combined.

Example 1

Figure 8.26 shows the tracks with the radar meâsurements that were obtained from the

msPMHT and the msPLST algorithms for crossing targets. The corresponding tracks

rvith the optical measurements are shown in figure 8.27.

Initially the radar and optical sensors both follow target 1, whose track is indicated as

a solid line in figures 8.26 and 8.27. Af approximately 0.3s, target 2 (shorvn as a dashed

line) begins to seduce the optical sensor, as shown by the optical measurements at 'A'.
The seduction is not perfect, with the optical measurements again originating from target
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Figure 8.26: T[acks from real crossing targets showing radar measurements
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Figure 8.27: tacks from real crossing targets showing optical measurements

1 at 'B', then target2 at 'C' and target 1 at 'D', before the seduction is finally complete.2

The msPMHT algorithm initially assigns all the measurements to target 1, as shown

in figures 8.28(a) and 8.29(a). It also assigns the optical measurements at 'B' and 'D'
to target 1, and the optical measurements at 'A' and 'C' to target 2, although it shows

some uncertainty with the soft assignments where the targets actually cross ('A'). It is

these hard assignments that enable the msPMHT algorithm to determine that the two
targets cross, and it uses the dynamic model to estimate the trajectory of target 2 during
the initial period when no measurements are assigned to it. Note that the msPMHT
incorrectly assigns the radar measurements at 'A' to target 2 (the radar did not produce
any measurements from target 2).

The msPLST algorithm is not certain to which target each measurement in the initial
stages is to be assigned. Therefore it produces soft assignments, see figures 8.2S(b) and
8.29(b)' and during the period before the targets cross, and for some time after, the
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2This scenario was considered to be the most likely from the video footage taken during data collection
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Figure 8.28: Measurement to target assignments of target 1 and the radar measurements
for real crossing targets
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Figure 8.29: Measurement to target assignments of target 1 and the optical measurements
for real crossing targets

measurements are distributed between the two targets. The resulting tracks both follow

the measurements, giving the impression of diverging rather than crossing targets. As the

targets separate, the algorithm becomes more confident in its assignments, and the tracks

become similar to those obtained from the msPMHT.

In this example, the underlying probability distributions allowed the msPMHT algo-

rithm to correctly assign the measurements to the appropriate targets (except where they
actually cross), and then produce accurate target tracks, even with the initial absence

of measurements from the second target. The msPLST does not assume any underlying
probability distributions, relying on minimising prediction errors. As a result, with no

model of expected behaviour, it was unable to make confident assignments and, in this
case, the resulting tracks did not reflect the true situation.

The performance of the msPMHT and msPLST algorithms was compared to that of
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Figure 8.30: Fixed interval Kalman smoother track from radar and optical measurements
from real crossing targets

a fixed interval Kalman smoother3 using all the measurements from both sensors.

Figures 8.30(a) and 8.30(b) show the track obtained from the Kalman smoother, with
the radar and optical measurements respectively. The Kalman smoother assumes a single

target, and that all measurements are suitable for tracking this target, i.e., it does not
perform any data association. As can be seen from figure 8.30, the target track from the
Kalman smoother follows the optical measurements, because the optical measurements

have a significantly lower noise covariance than the radar measurements. Therefore the
Kalman smoother applies a higher gain to the optical measurements, and they subse-

quently contribute more to the estimation process than the radar measurements.a

The track obtained from the Kalman smoother is similar to that of target 2 from the
msPLST (figure 8.27(b)). Therefore it would appear that similar results could be achieved

using a separate Kalman smoother for each of the radar and optical measurements, elim-
inating the need for data association. This would indeed be true for this example if the
seduction of the optical sensor was perfect, i.e., all optical measurements up the time that
the targets cross 'were from target 1, and all the remainder from target 2. However, as

shown in figure 8.27, this is not the case, hence the need for data association. Also, in
dense multi-target environments, individual sensors mav produce multiple simultaneous
measurements from different targets.

Example 2

In a second example illustrated in figures 8.31 and 8.32, the radar follows a single target,
target 1, until it is lost in clutter at 'E'. The optical sensor produces a single measure-

sThe fixed interval Kalma¡r smoother used here is equivalent to the AFKF (section 8.2) with its state
estimates smoothed by backward recursion.

4The effect of the Kalma¡r smoother gains is simila¡ to that of the AFKF, as discussed in section g.g.g.2.
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Figure 8.31: Target tracks from a real target in clutter showing radar measurements
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Figure 8.32: Target tracks from a real target in clutter showing optical measurements

ment at 'A', and a small burst of measurements at 'B', before locking onto a stationary
background object at 'C'. Once this leaves the field of view, several other clutter objects

are detected, and then the optical measurements cease except for isolated measurements

around 'D', assumed to be from the target.

Initially, both algorithms assign most of the radar measurements to target 2, as shown

in figure 8.33. Then both algorithms assign most of the radar measurements to target
1, particularly the msPMHT which makes harder assignments than the msPLST. Both
algorithms assign the optical measurements at 'A' to target 2, and most those at 'B', to
target 1. The initial optical measurements at 'C' are assigned by the msPMHT to target
1 (figure S.3 (a)) and, as they diverge from target 1, the rest are assigned to target 2,

whereas the msPLST tends to assign most of the measurements at 'C' to target 2 (fig-

ure 8.34(b)). Careful examination of these initial measurements indicates that they could
be assigned to either target. The algorithms continue to assign the radar measurements

to target 1 and the optical measurements to target 2. After approximately eight seconds,
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Figure 8.33: Measurement to target assignments of target 1 and radar measurements for
a real target in clutter
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Figure 8.34: Measurement to target assignments of target 1 and optical measurements
for a real target in clutter

no further measurements are assigned to target 2, except for some radar clutter measure-

ments at eleven seconds, indicating that it is probably not a genuine target. The optical
measurements at 'D' are assigned to target 1 by both algorithms, as this is their most
likely source. During the period of radar clutter at 'E', both algorithms assign most mea-

surements to target 2, with the tracks for target 1 continuing using the assumed target
dynamics.

In this example, both algorithms produced similar âssignments and tracks, although
again the msPMHT was more confident in its assignments. The ability of the algorithms
to maintain track in a region of optical clutter, and through a short period of radar clutter,
is demonstrated by this example. Both algorithms show promise in this application, but
further more detailed evaluation is advised.

A fixed interval Kalman smoother was applied to the data (figure 8.3b), and again
it preferred to follow the optical measurements when they were present. However, in
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this example, the optical measurements arose from clutter, and not from a legitimate

target, and consequently the Kalman smoother did not produce a valid target track. This
illustrates the unacceptable performance of the fixed interval Kalman smoother, caused by

its inability to select only those measurements suitable for tracking, i.e., those originating
from the target of interest. Therefore, as for the AFKF (section 3.3.3), it is easily seduced

by clutter and other targets.

Example 3

The msPMHT and msPLST tracks in figure 8.36 illustrate a problem arising from the

misalignment of sensors, in this case a radar and optical sensor. In this example, target
I moves in the direction of decreasing bearing, and initially both sensors are following
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this target. Optical measurements from target 2 only appear after 0.6 s, and this target
maintains an almost constant bearing.

The misalignment of the sensors causes the radar and optical measurements from
target 1 to be displaced from each other. Therefore, during the first 0.6 s, they appear

as two closely spaced targets instead of one, as shown by the target tracks from both the
msPMHT and msPLST algorithms in figure 8.36. Therefore sensor misalignment has the
potential to produce false target tracks in dense multi-target environments.

8.6 Modelling Errors

The msPMHT algorithm estimates the parameters of the underlying probability distri-
butions, therefore it would be expected that it would be susceptible to model mismatch.
On the other hand, the msPLST does not depend on the underlying distributions, except

that it uses the covariances as scaling factors. Therefore it should only be susceptible to
errors in the covariance values. This section evaluates the performance of both algorithms
under the assumption of Gaussian distributions with errors in the assumed measurement
noise covariances.

Consider the simple two target problem for one dimensional measurements, and assume

that the measurement noise covariances are independent of target model, i.e., R[1'') :
nÍi''l g Rii), and that all measurements are equally likely to originate from either target,
i'e', n-rf) : 

"Í?) 
: 0.5. Then the msPMHT target assignment probability (6.50) for the

measurement zji) and target 1 is given simply as

,Í,''') : (, * "*o (å*g'-' (.Íl'", ' - ,Í?",'))) 
-' 

(s.5)

It is obvious that this function is dependent on the covariance of the measurement noise.

The corresponding msPLST target assignment weight (7.33) is simplified to

r.9

"Í:
) (8.6)

which is independent of the measurement noise covariance.

The track error covariance of the target state estimates for each algorithm is dependent
on the selected values of measurement noise covariance and process noise covariance,
because this estimation is performed by a Kalman smoother. The difference in the TþlC
of the msPMHT and msPLST compared to that of the fixed interval Kalman smoother
is in the covariance of the composite measurements, which is dependent on the target
assignments.

Both algorithms estimate the target states with a fixed interval Kalman smoother,
and this uses the measurement noise covariances in the estimation process. Any errors in
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Figure 8.38: Measurement to target 1 assignments under matched conditions

these covariances rvill cause an increase in the TEC, hence both algorithms will suffer a

degradation in performance from any error in the measurement noise covariances.

The diverging target example was used to compare the operation of both algorithms

under these error conditions. Figure 8.37 shows the tracks obtained from each when

the measurement noise covariances are matched to the data. The target assignments for

target 1 are shown in figure 8.38. In this example, target 1 is moving in a direction

of increasing bearing (azimuth). At two seconds, target 2 crosses target 1, and sensor 2,

whose measurements are denoted by o's, is seduced by target 2 and commences to produce

measurements from it. Note that sensor 1, whose measurements are indicated by *'s, has

a measurement noise covariance ten times that of sensor 2.

It can be seen from figure 8.37 that both algorithms produce similar, but not identical,

target tracks, the difference being highlighted by the target assignments as illustrated in

figure 8.38. Both algorithms initially assign measurements from both sensors to each

target, and after the tracks diverge, assign the measurements from sensor 1 to target 1
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and the measurements from sensor 2 to target 2.

This section deals primarily with the differences in the assignments of both algorithms.
The effect of the assignments on the composite measurement covariance and TEC was

discussed in section 8.1.3.

Overestimation of Cova¡iance in Sensor 1

To evaluate the effect of measurement model errors, the assumerd noise covariance on
sensor 1 in both the msPMHT and msPLST was increased by a factor of ten, i.e., the
algorithms overestimate this noise covariance by a factor of ten. Under these conditions,
the msPLST tracks still follow the appropriate targets after divergence (figure 8.39(b)),
with some minor changes in track error due to the effect of the mismatch on the Kalman
smoother. However, before divergence, instead of assigning measurements to both targets
(figure 8.40(b)), the msPLST now assigns all measurements to target 1, and therefore
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target 2 deviates from the measurements. The target state estimates are affected by the

errors in the measurement noise covariance, and this in turn affects the estimated target

assignments, i.e., the assignments change as the tracks shift. This effect produces the

observed change in the target assignments.

The msPMHT tracks, as shown in figure 8.39(a), differ significantly from those ob-

tained under matched conditions, with one target track now following target 2, and the

other following nothing in particular. The algorithm assigns few measurements from

either sensor to target 1 (figure 8.40(a)), providing little correction to the track and al-

lowing it to be determined primarily by the target's dynamic model. This occurs because

the msPMHT believes that the measurements from sensor 1 are now 100 times (not ten

times as previously) noisier than those from sensor 2, and it now assumes that these

measurements belong to target 2 and no other valid target is present.

Overestimation of Covariance in Both Sensors

The tracks in figure 8.41 were obtained after increasing the assumed measurement noise

covariance of both sensors by a factor of ten over that of the matched conditions. The

msPLST results, shown in figures 8.41(b) and 8.42(b), are similar to those under matched

conditions, because the ratio of Kalman smoother gains for the radar and optical mea-

surements is similar to those under matched conditions.

The msPMHT tracks (figure 8.a1(a)) are again different to those obtained under

matched conditions. Here the track following the measurements from sensor 1 follows

the measurements from sensor 2 immediately after the targets diverge. During this time,

the algorithm cannot discriminate between the targets because of the extra assumed noise.

However, the weighting on the measurements from sensor 2 in the Kalman smoother is not
as high as when only the covariance of sensor 1 was increased, and therefore the track of
target 1 is able to return to the measurements from sensor 1 as the targets separate. Fig-
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Figure 8.42: Measurement to target 1 assignments with both Rjl) a"d Rj?) overestimated

ure 8.42(a) shows how the measurements from both sensors are assigned to both targets

before and immediately after divergence. The increased measurement noise covariance

creates greater uncertainty in the assignments of both algorithms. As the measurements

separate further, the measurements from sensor 2 arc assigned to target 2, and gradually

the nosier measurements from sensor 1 are assigned to target 1.

Careful observation of the target tracks from both algorithms shows that as the mea-

surement noise covariance of the measurements from a sensor increases, the tracks appear

straighter, indicating that the Kalman smoother decreases the significance of the mea-

surements, relying more on the dynamic model. This behaviour is expected from the
Kalman smoother.

The above results have shown that increasing the assumed measurement covariance of
one or more sensors reduces the ability of the msPMHT to discriminate between closely

spaced targets, and subsequently reduces its ability to identify all targets. The msPLST
did not suffer from this problem to the same extent as the msPMHT.

Underestimation of Covariance in Sensor 1

The effect of selecting assumed measurement covariances less than that of the data was

also investigated. With the measurement noise covariance of sensor 1 reduced by a factor
of ten from its matched value and sensor 2 remaining matched, the tracks of target 1

from both algorithms (figure 8.43) fluctuate more than they did under matched condi-
tions. This indicates that they tend to follow the measurements more closely, as would
be expected from a Kalman smoother with a lower measurement noise covariance. The
assignments from both algorithms (figure 8.44) are similar to those under matched condi-
tions, because the lower noise covariance allows the measurements to be assigned to both
targets. Therefore the main symptom of this measurement covariance mismatch is the
increased TEC, and this occurs in both algorithms.
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Underestimation of Covariance in Both Sensors

The measurement noise covariance of both sensors was reduced to a tenth of their matched

values, and the resulting target tracks are sho\Mn in figure 8.45. The lower value of

assumed measurement noise covariance causes both tracks from both algorithms to follow

the individual measurements more closely, as illustrated by the increased track error in

figure 8.45. The msPMHT track of target 1 follows the measurements from sensor 2

immediately after the targets diverge. This also occurs in the msPLST, but to a lesser

extent because the msPLST assignments at this time (figure 8.46) are softer than those

of the msPMHT.

For values of assumed measurement covariance that are less than that of the data, the

target tracks have a greater tendency to follow the individual measurements, causing an

increase in TEC. Also, both targets will initially tend to follow the measurements from

the sensor with the lowest noise as they diverge or separate.
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8.7 Summary of Algorithm Evaluation

The linear Gaussian msPMHT and msPLST algorithms have been compared. Both pro-
duce ¿ posteriori estimates of the target states and soft meâsurement to target assign-
ments.

The msPMHT log likelihood and msPLST cost functions are similar, the main differ-
ence being the absence of terms associated with the probability mass function of the target
assignments in the msPLST. This difference manifests itself in both the estimation of the
the target assignments, and how the assignments influence the composite measurement
and covariance used in the estimation of the target states.

The target assignment estimates of the msPMHT tend to be harder, i.e., closer to
one or zero, than those of the msPLST when the targets are well separated, although
this difference decreases as the target separation increases. When the targets are close,
the msPMHT still tends to make harder assignments, whereas the msPLST is unable to
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decide to which target to assign each measurement. These assignments affect the track

error covariance through the calculation of the covariance of the composite measurements.

When the targets are well separated, the composite measurement covariance, and therefore

the TEC, is less than that of the msPLST, because the target assignments are harder in

the msPMHT. For close targets, if most of the measurements are assigned to a particular

target, the msPMHT's composite measurement covariance and TEC will be lower than

that of the msPLST for that target. The converse applies if few measurements are assigned

to the target.

Both algorithms have similar complexity within each iteration of the algorithm, but
generally the msPMHT requires more iterations to converge.

Similar tracks were produced by both algorithms on simulated dual sensor mea,sure-

ments from crossing and diverging targets. Monte Carlo simulations showed that the

msPMHT produced awider rânge of tracks (in general all were practicallyfeasible), par-

ticularly when the targets rvere close, i.e., the msPMHT was more dependent on the

actual meâ,surements than was the msPLST. Evaluation on real data showed that both

algorithms produce satisfactory tracks, although in the case of crossing targets where one

is not detected until it approaches the other, the msPMHT's performance \4/as superior.

The msPMHT is more susceptible to errors in the measurement noise covariance than

the msPLST when determining its target assignments, because it relies on the underlying
pdf's. In particular, the msPMHT experiences difficulty discriminating between closely

spaced targets if the measurement noise covariance is overestimated. Both algorithms

experienced sub-optimal state estimation with incorrect measurement covariances, i.e.,

increased track error covariance. This was particularly evident when the measurement

covariance was underestimated.
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Summary

The application of state space techniques for tracking using measurements from multiple

sensors has been investigated from a track fusion and measurement association perspec-

tive. The knowledge of which mea,surements belong to a particular target, and can there-

fore be used for tracking, is usually not available. Solving this data association problem,

in particular for measurements from multiple sensors, has been addressed.

The key contributions of this thesis have been the application of the asynchronous fused

Kalman filter (AFKF) to tracking using real radar and optical data, and the development

and evaluation of the multi-sensor Probabilistic Multi-Hypothesis Tracking (msPMHT)

and multi-sensor Probabilistic Least Squares T[acking (msPLST) algorithms for tracking

multiple targets using measurements from multiple sensors.

9.1 Summary of the AFKF

The AFKF is a variable update rate Kalman filter with a time variant measurement

model that is determined by the sensor from which the measurement (or measurements)

are received.

Its performance has been evaluated using both real and simulated data. The simu-

Iated data provided insight into the operation of the AFKF, and illustrated the potential

improvement in tracking performance that can be achieved by using multiple sensors.

It was the application of the AFKF to real data collected from a radar and optical

sensor that was of most interest. When tracking a single target in the absence of other

targets and noise (clutter), the AFKF performed much as expected from the simulations.

However, the optical sensor is passive and does not provide any range information. As

a consequence, it receives measurements from all sources within its two-dimensional field

of view over its entire detection range. Other targets with similar angular position, but

separated in range, often seduced the optical sensor and, because the optical measurements

were not as noisy as those from the radar, the AFKF often lost the target of interest and

tracked the new interfering target. Similar problems arose when tracking in optical clutter.

T4L
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This provided the motivation for developing new algorithms that simultaneously solve

the data association and target state estimation problems.

The problem of model sensitivity in a dual sensor Kalman filter was investigated, and

its tracking performance \ryas compared to that of a single sensor Kalman filter. Errors
in the assumed process noise covariance produced almost identical changes in the track
error covariance of both Kalman filters. Mismatch in the measurement noise covariance

also produced similar results in both filters if the ratio of assumed to actual measurement

noise covariance (mismatch ratio) of the sensor common to both filters (original sensor)

was substantially smaller than in the other (additional) sensor. However, if the mismatch
ratio in the original sensor was larger than in the additional, the dual sensor filter was

more sensitive than the single sensor filter to errors in the measurement noise covariance.

If the mismatch ratio in the original sensor was equal to or marginally less than that of the
additional sensor, the dual sensor filter was less sensitive than the single to measurement
noise covariance errors.

9.2 summary of msPMHT and msPLST Algorithms
Two multi-sensor multi-target tracking algorithms, the multi-sensor Probabilistic Multi-
Hypothesis Tracking (msPMHT) and multi-sensor Probabilistic Least Squares tacking
(msPLST) algorithms, have been developed. The performance of each has been evaluated
using simulated and real data, and comparisons between the two have been made.

Both algorithms exhibit the following similarities.

o Batch algorithms, operating on an entire batch of measurements.

o Introduce soft or probabilistic measurement to target assignments.

o Estimate the measurement to target assignments and target states simultaneously.

o Iterate until the likelihood or cost function converges. Each algorithm has similar
complexity within each iteration.

o Converge to the nearest local mæ<imum or minimum and therefore require careful
initialisation.

o Limited to a predetermined maximum number of targets.

o Employ an extended observer containing the measurement to target assignments
and the target states.

o Separate target models for each target, each comprising of a dynamic model and a

separate measurement model for each sensor.
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The following differences between the algorithms are noted.

143

o The msPMHT is a maximum ¿ posteriori estimator, and the msPLST uses a mini-

mum mean squared error technique.

o The msPMHT relies upon the observer probability functions, while the msPLST

operates on squared error terms.

o Generally the msPMHT takes more iterations to reach convergence. The likelihood

maxima are broader, and probably overlap more, than the msPLST minima.

o The msPMHT is more prone to model errors.

o The msPMHT measurement to target assignments tend to be harder.

Both algorithms produced acceptable results in multi-sensor multi-target scenarios, as

indicated by testing on simulated and real data.

An extension of the msPMHT, the general msPMHT, allows multiple measurement

models for each sensor. The measurements are assigned to these models by soft mea-

surement to sensor assignments that are estimated along with the target assignments and

states.

9.3 F\rture Research

Research in this area is by no means complete. Some possible areâs of future research

include the following.

Non-linear (Extended) AFKF

Each tracking coordinate, e.g., azimuth, elevation and range, \ryas assumed to be indepen-

dent of the others in the AFKF. The use of non-linear dynamic models, or Cartesian state

variables with non-linear measurement models, will introduce the inter-dimensional de-

pendencies into the target models, and this may improve the tracking performance under

some conditions.

Recursive versions of the msPMHT and msPLST algorithms

Currently, both the msPMHT and msPLST are batch algorithms. In many tracking

applications, a recursive solution where the algorithm is updated on receipt of a new

measurement would be advantageous. Recursive versions of the EM and least squares

algorithms could possibly be incorporated into the algorithms.
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Analysis of msPMHT and msPLST in clutter

CHAPTER 9. SUMMARY

The evaluation in this thesis has concentrated on tracking in the presence of closely

spaced targets. Evaluation of the algorithms in clutter, and the selection of suitable
clutter models, provide the opportunity for further research.

Soft dynamic model assignments

Soft sensor assignments have been introduced in the general msPMHT for associating
measurements to the sensor model that is most appropriate for the current operating
conditions. A similar technique to assign the most appropriate dynamic model to a

target may be useful, particularly for manoeuvring targets. This may have significant
parallels with Interacting Multiple Model (IMM) filters.

Variable number of targets

The msPMHT and msPLST algorithms both assume a fixed maximum number of targets.
Provision to change this value to the number of targets within the environment could be

of interest.

Evaluation using non-linear systems and non-Gaussian distributions

Evaluation of the msPMHT and msPLST algorithms to date has assumed linear systems
with Gaussian noise statistics. Their performance with non-linear dynamic or measure-
ment models and non-Gaussian noise distributions, such as Ricean for radar, may be of
interest in some applications.

9.4 Conclusions

This thesis has investigated the performance of the asynchronous fused Kalman filter for
multi-sensor tracking. Although its performance is satisfactory under near ideal condi-
tions, evaluation on real data has shown a strong tendency to lose track in the presence

of other targets or clutter.

The msPMHT and msPLST algorithms were developed to overcome the data associ-

ation problem when tracking in multi-sensor multi-target environments. Both performed
successfully, particularly with crossing and diverging targets.

The general msPMHT algorithm has been developed to provide multiple sensor models
for each sensor within each target model. The algorithm chooses the most appropriate for
each measurement, allowing the algorithm to adapt to changing sensor characteristics.



ApppNux A

Sensor Fusion Testbed

A multi-sensor testbed has been developed by the Tactical Surveillance Systems Division

(TSSD), formerly the Microwave Radar Division (MRD), of the Defence Science and

Technology Organisation (DSTO), Australia. It was built to collect track data from

multiple sensors and to assist in the development and evaluation of multi-sensor tracking

algorithms. It resides in the trailer housing the TSSD's Generic Pulse Doppler Radar

(GPDR) and has two sensors, the GPDR and an optical tracking system, with provision

for adding others. It may be operated on location at remote sites with a portable three

phase generator, as shown in figure 4.1.

The GPDR is an experimental X-band pulse Doppler radar that was developed by

the TSSD. It is an amplitude monopulse radar operating at frequencies within the range

Figure 4.1: Sensor fusion testbed operating at a remote site
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9-10GHz. It has a 3dB beam-width of approximately 1.6o in both azimuth (bearing)

and elevation, and at any time the antenna azimuth and elevation positions are known

to an accuracy of 0.38mrad. The radar has eight range cells, each being 1ps (150m)

wide, and is able to resolve in range to a maximum accuracy of 62.5ns (9.am). The two

centre range cells act as a split gate discriminate, providing more precise measurements

through interpolation. The four outermost range cells are used to estimate the signal to
noise ratio (SNR). Each range cell contains 128 Doppter or frequency bins, with the two
bins adjacent to the signal frequency forming a split gate velocity discriminant to measure

the target's velocity. The radar provides azimuth, elevation, range and Doppler velocityl
measurements approximately every 33.3 ms during target tracking. The radar is almost

completely software controlled, and most parameters may be configured by the user.

The optical sensor is a colour video camera attached to the radar's antenna mount
and positioned directly above the radar's antenna. The camera is fitted with a 75 mm
lens through a focal length doubler, giving an effective focal length of 150mm. This
corresponds to a horizontal field of view (FOV) of approximately 2.4 and a vertical FOV
of approximately 1.8o . This is comparable to the 3dB beamwidth of the radar (1.6" in
both directions), and the sensors are aligned to maximise their region of overlap. The

camera's output images are processed by an Adept20 automati,c uideo tracker (AVT) that
is housed inside the GPDR's trailer. The AVT extracts the target from the video image

and produces azimuth and elevation measurements of the target's position relative to
the system's line of boresight. A choice of tracking and pre-processing algorithms are

available, and the system is configurable through a software controlled user interface.

î,e Ârl,Áe

Figure A..2: Sensor fusion testbed block diagram
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rDoppler velocity is the negative range rate, i.e., the radial velocity of the target towards the radar
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As illustrated in the functional diagram of figure 4,.2, the radar and optical system

are connected to a separate computing platform, designated as the tusion centre. Both
the radar and optical system provide azimuth and elevation measurements in the form of

boresight errors (44 and Ae respectively). The radar also provides range (R) and Doppler

velocity (-rt) measurements. To complete the azimuth and elevation measurements, the

antenna boresight position (4 and e) is provided by the radar's antenna control. The

fusion centre uses these measurements to produce estimates of the state of the target's

dynamics. The azimuth and elevation rate estimates (a a1a ê) are used to control the

antenna mount, and the range and range rate estimates (.R and R) are used to position

the range and velocity gates. Other state parameter estimates, e.g., azimuth (a) and

elevation (ê), are also available from the fusion centre. A data logging facility is capable

of recording radar, optical and fusion centre parameters for post trial evaluation.

A detailed description of the testbed, including hardware specifications, is given in
(Krieg 1997).
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Kalman Smoother Derivation

For linear Gaussian systems, the state estimates for a target may be obtained by solving

the tridiagonal system of T t l equations (8.1) corresponding to that particular target.

The linear Gaussian version of the msPMHT ((6.38), page 78) and the msPLST ((7.2S),

page 100) algorithms require this system of equations be solved for each target, i.e., for

targets rn : !,. . ., M where M is the number of targets. In these algorithms , Zl^) and,

ñf-) .tp."sent the composite measurement and its covariance for target m at lime t¿.

The composite measurement is a weighted sum of all measurements generated at time

f¿, where the values of the actual weights are algorithm dependent. The terms in (8.2)
are defined in chapter 5 with the exception of the measurement model, in which-signifies

variables associated with the composite measurement model.l

(tÍf'-' * DÍi)) "Íi) - eÍf)*Íï) : ¡f-)-t*t-)

- eÍiì'"Íil + (oÍ1,+ oii') *lir - eÍi)*Íïl :

eÍîlJ*Íil, al.1)"lT)

(i:0)

"Í? i:r,2,...,:^-r

"ÍT)
(i:T)

(8.1)

+

where

nÍï) : OÍ:), '+ 6Íï)rRÍ'rn)-lti(,n)

Bf) : Fj-)rq(-)-t
.Í:) : ¡l-)rPr-l-'"ÍT)
oÍï) : Fj-)rq(*)-'rÍï)

i: Ir2,... rT
i:0,1,...,7-l
i: I,2,...,7
i:0,1,...,7-7

(B.2)

Directly solving the system of equations (8.1) requires the inversion of aT * 1 by ?+ I
matrix, where T is the length of the batch of (composite) measurements. This method

lThe composite measurement model is defined in chapter 6, page 78.
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becomes computationally expensive if, as often is the case, large batches of measurements

are to be processed. Streit and Luginbuhl (1995) recognised the forward and backward

recursive structure of the equations (8.1), and they found that the solution could be

obtained by processing the measurements through a fi,red interual Kalman smoother. The

derivation of this bi-directional recursive algorithm from the equations (8.1) is included

below for completeness.

E}.1 State Estimates

The given known covariance matrices, i.e., !ji), aÍf),..., aÍi],, ñÍi),. .., ñÍi), are as-

sumed to be symmetric. This assumption is reasonable because, by definition, each of
these covariance matrices is the expectation of the outer product of a vector with itself,

e'8''

rÍr) : E 
l(*fi) - "Íí,,) (*Ír, - "fi,)'] (8 3)

where "ji) ir the true state of target rn at time ú6.

The derivation begins by replacing the target states, *[T), io (8.1) with their estimates,

*[i). fne", using the first equation from (8.1), the state estimate at time ús is expressed
. ^(m\rn terms o1 xir ', l.€.,

*ii) : (tÍi,-' + FÍi)'OÍn')-lF(,-))-1

: xÍf) + tÍí')FÍi)'(rii'>f'ri

The concept of a forward, state estimotr, VÍTl, is introduced as the state estimate for
target rn at time ú¿, given all measurements up to and including time t¡ for ú¡ ( ú¿. The

covariance of this forward state estimate is

pli., :' 
f{oln} - "Ít,) (rfiì - "fi,)'] (B b)

where *j-) ,.pr.sents the true state of target rn at time t¿.

The initial forward state estimate and its covariance are taken as the a priori state
estimate and its covariance, i.e.,

^ (rn). -(rn\
Yiorío : xìo '

tfii : ¡Íf' (8 6)

Using a linear Gaussian target dynamic model (5.13), the predicted forward state estimate
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at time t1 is defined as iÍÏj, : fÍf)lÍi/., with covariance

PÍîà : rÍf)pÍij.FÍf)'+ oÍï). (B Z)

Substituting (8.6) and (8.7) into (8.4) gives

*Íi) : rji], + pÍil.rÍf)'pÍîà-' (ofl, - Ffi)rÍià) (B.s)

This is the state estimate at time ús €xpr€ss€d as a function of the forward state estimate

at time ¿r, tji]r,and the state estimate at time t1, *[i).

From the ith equation in (B.f), the state estimate at time ú¿ is

*Íï) : (Oflì-'+ rlÍï)rRÍ'Ín)-lH(m)

,. l¡Íl),aÍ?-zÍ-' + oÍïì-
L

Modifying (B.S) to represent *ji), ana substituting into (8.9), the state estimate at ú¿

becomes

*Í? : (ofïl-' - oÍïl'rÍ:l pÍï|r,,-, rÍil'pÍliì-l * Hi-)rpt-r-'ÉÍï)

+ rÍï)'qÍl'-'rÍl))-'[ri-,'oÍl)-'*Íiì + HÍi) t *!m)-r2@)

+ qÍïl-"fll (t - pÍlìp,_,FÍil'pÍï¿_lrf:l) 
"Íï1,,,_,1

Denoting the forward state estimate covariances as

PÍïì : (tÍiÌ-l + ÉÍl') rñ(rr¿)-1 Éfl')

: pÍîì_, - pÍiì_,ÉÍï)' (nPpÍ:i¿_,ÉÍi)'* ñÍï')-'RÍï)pÍ:i¿_, (8 11)

rÍï1,,, : FÍ? pÍïì rÍï)' + eÍï),

(8.10) may be written

*Íï) : pÍïìrÍï)'pÍïlÞl*fiì * (t - pÍïì eÍï)'pÍiìþlFfi))

' Irf:ìyÍ:ìr,,_, * 
pÍiìHÍi)rrt(rn)-r (ul:, - HÍï)FÍilijï|,,,_.)]

Defining the forward state estimate at time t¿ as

tÍil : rÍïlvÍIìp -, + pÍïìtti-)rç(-r-' (uÍ:' - HÍi)rÍ:lrÍIì',,-,) , (8.13)

(8.10)

(8.12)

i.e., a Kalman filter, the assumed forward state estimate covariance definitions in (8.11)
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are correct, and substituting (8.13) into (8.12), the state estimate at time ú¿ becomes

í.Íï) : rÍftì + pÍftlrÍï)'pÍïìþ: (ofll - Flf)iÍft]) (8.14)

The state estimate at time ¿i (8.14) is a function of the forward state estimate at time
tn,9Íi].,, and the state estimate at time ú¿-,.1, *[[]. ffre forward state estimate (B.13) is

a function of the previous forward state estimate at time ú¿-1 and the measurement at

time ú¿, Zji). Si*ilarly, the forward state estimate covariances (8.11) are functions of the
forward state estimate covariances from previous times and the measurement covariance

at the present time. Therefore the forward state estimates and their covariances may be

calculated using forward recursion, which may then be followed by backward recursion to
calculate the final smoothed state estimates.

All that is now required is some way of terminating the forward recursion to allow

the backward recursion to commence. Looking to the final equation in (8.1), the state

estimate at the end of the batch of measurements is

*Íî) : (ofiì,' + ÉÍi)'RÍf)-'HÍî') [nff''aÍT)-'zl7r + qÍi],'rÍil,*Íil,] . (8 15)

Modifying (8.14) for icjfr)-, and substituting it into (B.15)

*Íi) : ( olîì,' - aÍîl ¡' rÍP,pli),r,,_, rÍil,' p ÍT,l;'_,+ n Íî) 
r 

rt 
(zn) - r Êt 

f i, )
, [RÍi''n Í?- zÍP + oÍî], 'FÍil, (1 - pÍi_,v,_,rÍ?J plTt);l, rÍp,) 

"jî1, 
ø_,] .

(8.16)

using forward state estimate covariance definitions for PÍT)rlrr_r, pÍîl\r_rana ejl), tnat
are similar to those in (8.11),

*Í? - çÍP,EÍî),tt,_, * pÍTì,r¡j-)rp1-¡-' (uÍT, - ÉÍi)rÍfl,vÍP,r,,_,)]
^ lrn): Virl'tr.

(8.17)

Therefore at time úa, the state estimate is equal to the forward state estimate at
time ú7. The forward recursion ceases at this point because no further measurements are

available and, because the state estimate at this time is known, the backward recursion
commences.

8.2 summary of the Kalman smoother Algorithm

The fixed interval Kalman smoother algorithm may be summarised as follows.
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1. Initialise the forward state estimates using

vÍil, : *Íi)
Prià : tÍi).

2. Perform the forward recursion, i: I,. . . , ?, with

pÍi¿_, : FÍ:ìpÍIìr,,_,FÍil'+ qÍïì

PÍIiì

eÍfl,

: (tÍiì-i + HÍï)rrt(rn)-rÉlï))

: F|fl,n,:l r,,-, * ptfljú?' ni-)- t (uf:' - H Íi) FÍil rÍ11,,,_, )

iÍi;:viïì -"Íï)
: (r - pÍ:iìHÍi)rrt(m)-rÉfï)) (rf:lyj:ì,ú¡_r *fïl)

+ PÍÏì Hi-) rPt-r-'+il).
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3. Determine the state estimate at time ú7, i.e.,

(8.20)

4. Calculate the final state estimates using backward recursion, i : T - 1, . . . ,0, i.e.,

*Íï) : e:î),+ pÍiìrÍi)'pÍïìþl (ofll - Ffl)rjfrl) (8.21)

The equations (8.18) to (n.Zt) represent the Rauch-füng-Striebel form of the fixed
interval Kalman smoother (Gelb 1992, p 164), as recognised by Streit and Luginbuhl
(1995). Also, the forward state estimates ijÏì are equivalent to the state estimates from
a Kalman filter.

8.3 State Estimate Error Covariance

Although not required to estimate the target states, the state estimate error covariance

may prove useful in further processing. Therefore its derivation is given below.

Using (8.14), (5.13) and (5.15), the state estimate error is defined as

*Íï):*Íi)-"Íï)
: iÍiì + pÍiìFÍï)'pÍiìri ("1-' - (rfl,yÍiì - *fl,))

(8.22)

where, from (8.13), the forward state error is given as

^ lrnl
Yìrti,*.t,

(B.18)

(8.1e)

(8.23)
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The covariance of the state estimate error at time ú¿ is defined as

rÍï) : u þÍï)"Íl)'] (8.24)

and, given the definition of the forward state estimate covariance ejlr] in (8.5), it is

written

>Íi) : pÍ?,+ pÍ:iìrÍï)'pÍiÌþl ("fll - pÍïìp,) pÍilþlFfï)pÍft] (8 25)

The calculation of the state estimate error covariance may be performed with the

state estimation during the backward recursion. Similarly to the state estimate, the state

estimate error covariance at time úa is defined as the forward state error covariance at
that time, i..., tÍi) : PÍT|,.
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