

CRYSTALLINE CYTOCHROME b2

Thesis submitted for the degree of

Doctor of Philosophy

by

LEIGH ALEXANDER BURGOYNE B.Ag.Sc. (Hons.)

from

The Department of Biochemistry

University of Adelaide

July 1967.

PAPERS PUBLISHED OR IN THE PRESS

- Symons, R.H. and Burgoyne, L.A. (1966).
 L-Lactate (cytochrome) Dehydrogenase (Crystalline, Yeast). <u>Methods in Enzymology</u>, <u>9</u>, 314.
- 2. Nicholls, R.G., Atkinson, M.R., Burgoyne, L.A. and Symons, R.H. (1966). Changes in the properties of L-Lactate dehydrogenase (Cytochrome \underline{b}_2) from yeast during the purification of the enzyme. <u>Biochim. Biophys</u>. <u>Acta</u>, 122, 14.
- 3. Burgoyne, L.A. and Symons, R.H. (1966). The DNA component of cytochrome b₂ II. The specificity of its association with the enzyme and its origin from high M.W. DNA. <u>Biochim, Biophys. Acta</u>, <u>129</u>, 502.
- Burgoyne, L.A., Dyer, P.Y. and Symons, R.H.
 J. Ultrastructure Res. (In the press).

ACKNOWLEDGEMENTS

This work was supported by a grant from the Nuffield Foundation.

I thank Dr. R.H. Symons for his advice, encouragement and criticism during the experimental studies and preparation of the manuscript.

Dr. Symons also synthesised the α -[³²P] labelled UTP used in CHAPTER VI.

Professor M.R. Atkinson at the Department of Biology, Flinders University, supplied some materials (stated in text) and his advice and comments have been much appreciated.

The electron microscope studies reported in CHAPTER IV were made possible by the assistance of Miss P.Y. Dyer who operated the electron microscope and carried out much of the fixation and preparation.

I should like to thank Dr. G.E. Rogers for his general advice related to the electron microscope work, and Dr. D.B. Keech for advice on a large number of questions related to carbohydrate metabolism.

I should like to acknowledge the efforts of Mrs. K. Warnaby who typed the final draft of this thesis.

The interest and encouragement from the Head of the Department, Professor W.H. Elliott and other members of the Department has been invaluable. INDEX

V.

INT	RODUCTION	1
A.	HISTORICAL	2
	(1) Yeast lactate dehydrogenases	2
	(2) Yeast L(+) lactate-dehydrogenase (cytochrome <u>b</u> 2)	3
В.	A DESCRIPTION OF THE COMPONENTS OF CRYSTALLINE TYPE I CYTOCHROME \underline{b}_2 OF YEAST	6
	(1) The physical properties of the enzyme	6
Ð	(2) Homogeneity of the flavo-haemo-protein	8
	(3) The haem and flavin group	9
	(4) The mechanism of the enzymic reaction	10
	(5) The DNA component $(\underline{b}_2 - DNA)$	11
	(a) Composition	11
	(b) Secondary structure	11
	(c) Size of \underline{b}_2 -DNA	
	(6) The specificity of the association between cytochrome $\frac{b}{2}$ and the DNA	14
C.	THE BIOLOGICAL IMPLICATIONS OF THE EXISTENCE OF TYPE I CYTOCHROME \underline{b}_2	16
	(1) The implications of Type I cytochrome \underline{b}_2 with respect to nucleoproteins	16
	(2) The possible implications of the Type	
	I cytochrome <u>b</u> , with respect to cytoplasmic determinants	18
	(a) Cytoplasmic determinants	18
	(b) Cytoplasmic DNA	19
	(c) The expression of cytoplasmic DNA	24

CHAPTER ONE: GENERAL MATERIALS AND METHODS

29

	page
<u>CHAPTER TWO</u> : A STUDY OF THE EVENTS THAT OCCUR DURING THE STANDARD	
PREPARATION OF CRYSTALLINE	34
CYTOCHROME <u>b</u> 2	-
INTRODUCTION	34
A. CHANGES IN NUCLEIC ACIDS DURING THE PREPARATION PROCEDURE	35
MATERIALS AND METHODS	35
RESULTS	35
(1) Post-extraction changes in the population of nucleic acid molecules as studied by chromatography on DEAE-cellulose	36
(2) The effect of different yeast handling and drying procedures on the subsequent events in the preparation procedure	41
B. CHANGES IN THE PROTEIN DURING PREPARATION OF OF THE CRYSTALLINE ENZYME	43
INTRODUCTION	43
MATERIALS AND METHODS	44
(1) Preparation of $[^{35}S]$ enzyme	44
(2) Radioactive counting of cytochrome \underline{b}_2	47
(a) Method 1	47
(b) Method 2	47
(c) Method 3	48
RESULTS	49
(1) Experiment 4	51
DISCUSSION	

CHAPTER THREE: THE FACTORS DETERMINING THE TYPE OF ASSOCIATION BETWEEN POLYANIONS AND TYPE II CYTOCHROME <u>b</u>2

INTRODUCTION

60

60

vi.

page

▼ii

A.	THE ASSOCIATION OF THE OXIDISED FLAVO- HAEMO-PROTEIN AND <u>b</u> -DNA IN SOLUTION	62
	MATERIALS AND METHODS	62
	(1) Preparation of oxidised enzyme	63
	RESULTS	63
В.	THE FACTORS THAT DETERMINE WHETHER A NUCLEIC ACID CAN ENTER INTO A CRYSTALLINE ASSOCIA- TION WITH TYPE II CYTOCHROME <u>b</u> THAT HAS THE FORM OF TYPE I CYTOCHROME ² <u>b</u>	65
	MATERIALS AND METHODS	65
	RESULTS	69
	(1) Preferential selection of DNA in the presence of RNA	69
	(2) The effect of size and secondary structure of DNA on its ability to be incorporated into crystals	70
CHA1	PTER FOUR: THE STRUCTURE OF THE CRYSTALS OF TYPE I AND II CYTOCHROME <u>b</u> 2	76
INT	RODUCTION	76
	MATERIALS AND METHODS	77
	(1) Preparation of the carbon films for the grids	77
	(2) Preparations of solutions of Type I or II cytochrome \underline{b}_2 for electron micro-	
	scopy ~	77
	(3) Preparation of DNA-free (Type II) cytochrome b crystals for electron microscopy	78
	(a) Sonicated fragments	78
	(b) Crystal sections	78
	 (4) Preparation of Type I cytochrome b crystals for electron microscopy 	79

	page	
RESULTS		
(1) Studies of single protein molecules	79	
(2) The crystals of Type I and Type II cytochrome <u>b</u> as observed by the light microscope	81	
(a) Type I cytochrome \underline{b}_2	81	
(b) Type II cytochrome <u>b</u> 2	82	
(3) Study of the hexagonal bipyramid crystal of Type II cytochrome \underline{b}_2 in the electron		
microscope ~	83	
(4) Electron microscope studies of the Type I cytochrome \underline{b}_2 crystals	85	
(5) Proposed shape of the protein molecule and the structure of the Type II		
cytochrome <u>b</u> , crystals	86	
(6) Proposed structure of the Type I cytochrome \underline{b}_2 crystals	88	
(7) Possibility of artifacts in the crystal studies	90	
DISCUSSION		

viii.

CHAPTER	FIVE: A STUDY OF THE ORIGIN OF THE \underline{b}_{2} -DNA IN THE YEAST CELL BY AN ANALYSIS OF THE RNA SPECIES THAT ARE COMPLEMENTARY TO \underline{b}_{2} -DNA	96
INTRODUC	TION	96
MATH	ERIALS AND METHODS	- 98
(1)	Preparation of radioactive yeast RNA	98
(2)	Formation and estimation of DNA-RNA	
	hybrids	100
(3)	Sucrose gradients	101

(3) Sucrose gradients RESULTS

A. DETECTION OF DNA-RNA HYBRIDS 101

ix.

page

1.0

в.	EFFECT OF DNA-RNA RATIO AND THE NUCLEIC ACID CONCENTRATION ON THE EFFICIENCY OF HYBRIDISATION	103
с.	THE SIZE DISTRIBUTION OF YEAST RNA THAT IS HOMOLOGOUS TO <u>b</u> 2-DNA DISCUSSION	105 108

CHAPTER SIX:	YEAST DNA-DEPENDENT RNA POLYMERASES	112
INTRODUCTION		112
MATERIALS	AND METHODS	114

 Assay buffers 	114
(2) Assay method	114
RESULTS	115
(1) The extraction procedure	115
(2) The general properties of the enzyme preparation	118
(a) Assay variation	118
(b) Specific activity	118
(c) Requirements	118
(d) Properties of the product	120
(e) Inhibitors	120
DISCUSSION	121

ABBREVIATIONS

ATP	Adenosine triphosphate.
b2-DNA	This is the DNA found in the crystals
~	of Type I cytochrome \underline{b}_2 (see INTRODUCTION
	of thesis).
cm .	Centimeters.
CPM	The number of counts or pulses per min.
	as recorded by a Geiger-Muller, gas-flow
	or Scintillation counter.
CTP	Cytidine triphosphate.
DNA	Deoxyribonucleic acid.
E	This is the optical density of a solution
	with a 1.0 cm. light path at the wavelength
	stated in the subscript.
EDTA	Ethylene diamine tetraacetate.
FMN	Flavin mononucleotide.
g.	Gram.
GM	Geiger-Muller.
GTP	Guanosine triphosphate.
M	Molar.
mCi	Millicurie.
mg.	Milligram.
ml.	Millilitre.
mM.	Millimolar.
PEP	Phosphoenol pyruvate.
RNA	Ribose nucleic acid.
TCA	Trichloroacetic acid.
tris	Tris (hydroxymethyl) amino methane.
UTP	Uridine triphosphate.

х,

SUMMARY

(1) It has been shown that the flavo-haemo-protein of cytochrome \underline{b}_2 must undergo modification before it will crystallise under the conditions of the first crystalli-sation step in the Appleby and Morton procedure.

(2) Air drying or ageing of the yeast is necessary for the release of \underline{b}_2 -DNA. Preparations of crystalline Type I cytochrome \underline{b}_2 from fresh, freeze-dried yeast contained less than the usual amounts of \underline{b}_2 -DNA.

(3) The protein and DNA of the oxidised Type I cytochrome \underline{b}_2 have been shown to be largely dissociated when the enzyme is in solution.

(4) The specificity of the association between the DNA component and the enzyme of crystalline Type I cytochrome \underline{b}_2 has been investigated by testing the ability of various nucleic acid preparations to form crystalline complexes with DNA-free (Type II) cytochrome \underline{b}_2 . It was found that only double-stranded DNA molecules with a molecular weight of roughly 2 x 10⁵ produced the square plate crystals that are character-istic of normal preparations of Type I cytochrome \underline{b}_2 . High molecular weight DNA and single-stranded DNA, either native or denatured, produced either amorphous

precipitates or various semi-crystalline forms: These effects were independent of the base composition of the samples used. Polyacrylate, a linear, non-cross linked, polyanion produced square plate crystals with Type II cytochrome \underline{b}_2 .

(5) The ability of \underline{b}_2 -DNA to anneal extensively with all samples of labelled yeast RNA collected after centrifugation on a sucrose density gradient, even with RNA up to 10 times its own size, has been taken as proof that \underline{b}_2 -DNA is a breakdown product of higher molecular weight yeast DNA.

(6) The structure of the two crystalline forms of cytochrome \underline{b}_2 has been studied by electron microscopy. From the results, the approximate dimensions of a single enzyme molecule of molecular weight 170,000 were determined as 92 x 82 x 26 A^o.

(7) Sections of the hexagonal bipyramid crystals (Type II cytochrome \underline{b}_2) at right angles to the <u>c</u> axis showed a regular hexagonal network with, apparently, one protein molecule forming the side of each hexagon. Sections parallel to the <u>c</u> axis showed that the empty, hexagonal tubes of protein ran right through the crystal. The structure deduced from the sections was

xii.

in agreement with that observed in negatively stained, sonicated fragments of the same crystal type.

(8) The flat, square plate crystals of Type I cytochrome \underline{b}_2 were seen as parallel rows of protein molecules arranged as layers which were stacked on top of each other to form the crystal. It appeared that alternate layers of protein were arranged at right angles to the ones in between. It has not been possible to obtain satisfactory side views of the structure of this crystal type, nor to locate visually the position of the DNA. However, a structure of these nucleoprotein crystals consistent with available data has been proposed.

(9) A yeast protein solution has been prepared that had DNA-dependent RNA polymerase activity that was Actinomycin D sensitive. The enzyme appeared to be producing a hetero-polymer of ribonucleotides and some of its other properties have been briefly described.

xiii.