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ABSTRACT

Autophagy is an intracellular recycling and degradation process,
which is important for energy metabolism, lipid metabolism,
physiological stress response and organism development. During
Drosophila development, autophagy is up-regulated in fat body and
midgut cells, to control metabolic function and to enable tissue
remodelling. Atg9 is the only transmembrane protein involved
in the core autophagy machinery and is thought to have a role in
autophagosome formation. During Drosophila development, Atg9
co-located with Atg8 autophagosomes, Rab11 endosomes and
Lamp1 endosomes-lysosomes. RNAIi silencing of Afg9 reduced
both the number and the size of autophagosomes during
development and caused morphological changes to amphisomes/
autolysosomes. In control cells there was compartmentalised
acidification corresponding to intraluminal Rab11/Lamp-1 vesicles,
but in Atg9 depleted cells there were no intraluminal vesicles and the
acidification was not compartmentalised. We concluded that Atg9 is
required to form intraluminal vesicles and for localised acidification
within  amphisomes/autolysosomes, and consequently when
depleted, reduced the capacity to degrade and remodel gut tissue
during development.

KEY WORDS: Atg9, Autophagy, Autophagosome, Amphisome,
Autolysosome, Multivesicular endosome, Lysosome, Intraluminal
vesicles

INTRODUCTION

Macroautophagy or autophagy is an intracellular process that is
highly conserved from yeast through to mammals, and involves
the encapsulation of cytoplasmic components into a double
membrane structure called an autophagosome (Ohsumi, 2014).
Autophagosomes can then undergo a sequential maturation process
by interacting with endosomes to form amphisomes and then
lysosomes to generate autolysosomes; which eventually results in
the degradation of engulfed cytoplasmic material (Gordon and
Seglen, 1988; Berg et al., 1998; Lamb et al., 2013a; Shen and
Mizushima, 2014). This catabolic process is an important
mechanism for the bulk degradation of cytoplasmic constituents,
the clearance of protein aggregates, the recycling of aged or
defective organelles and for combatting intracellular pathogens
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(Mizushima et al., 2008). Autophagosomes also have critical
functional roles in cellular homeostasis, being specifically involved
in energy/nutrient sensing, glucose/glycogen metabolism, and lipid
transport, storage and metabolism (Singh et al., 2009; Singh and
Cuervo, 2011). Autophagy operates at a basal level in most cell
types, but can be specifically induced in response to hormonal and
developmental signalling, nutrient restriction, aberrant protein
folding, altered homeostasis/physiological stress, and various
pathological conditions including neurodegenerative disease,
infection, aging and cancer (Kundu and Thompson, 2008;
Deretic, 2009; Kroemer et al., 2010; Liu and Ryan, 2012). While
the core molecular machinery involved in autophagy has been
identified (Tsukada and Ohsumi, 1993; Thumm et al., 1994,
Harding et al., 1995), the mechanisms orchestrating this critical
intracellular process and the precise role for each component of the
molecular machinery are yet to be fully defined.

Over 30 autophagy related genes (Atg) have been discovered,
mainly from studies in yeast (Tsukada and Ohsumi, 1993;
Nakatogawa et al., 2009). Upon the induction of autophagy, by
for example starvation, most of these Atg proteins are localised to a
perivacuolar structure called the pre-autophagosome structure
(PAS; Suzuki et al., 2001, 2007). The PAS is a precursor for
autophagosome formation and involves the recruitment of the
kinase complexes Atgl/ULK1 and Atg6/Beclinl to a structure that
generates an autophagosome-specific pool of phosphatidylinositiol-
3-phosphate (Rubinsztein et al., 2012). This lipid pool drives the
nucleation of the phagophore and recruitment of other autophagy-
related proteins to the isolation membrane (Lamb et al., 2013b;
Wirth et al., 2013). Membrane expansion and closure of the
phagophore involves the Atg5-Atg12 complex, which acts as an E-3
ligase to mediate the lipidation of Atg8/LC3, and the latter remains
associated with the outer autophagosome membrane during
maturation (Klionsky and Schulman, 2014). The multiple-
spanning integral membrane protein Atg9 is an early target of the
Atgl/ULK1 kinase complex and Atg9 phosphorylation is required
for the efficient recruitment of Atg8 and Atgl8 to the site of
autophagosome formation (Papinski et al., 2014); making it an
essential component of the autophagic molecular machinery.

The integral membrane properties of Atg9 and its detection in
different membrane compartments, including small vesicles that
reside in close proximity to the Golgi, mitochondria and the PAS,
have led to the suggestion that Atg9 is involved in membrane
delivery to the expanding phagophore (Mari et al., 2010; Lamb
et al., 2013b). In yeast, for example, Atg9 can be detected on small
30-60 nm vesicles at the PAS (Yamamoto et al., 2012) and may
interact with the Atgl7 scaffolding complex assembled by Atgl/
ULKI1 to facilitate Atg9 vesicle fusion (Sekito et al., 2009; Ragusa
et al., 2012). This vesicular fusion may provide a membrane
platform on which the isolation membrane can then be formed
(Yamamoto et al., 2012; Shibutani and Yoshimori, 2014). In
mammalian cells, Atg9 also localises with Atgl/ULK1 and Atgl6L
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at recycling endosomes (Longatti et al., 2012; Puri et al., 2013) and
is trafficked to the recycling endosome from the plasma membrane,
possibly through the early endosome (Ravikumar et al., 2010;
Longatti et al., 2012; Puri et al., 2013). While Atg9 might have a
role in the formation of membrane platforms, it is sequestered to but
not integrated into autophagosomes (Orsi et al., 2012), raising
concerns over the ideas on membrane recruitment and suggesting
that it has an alternate functional role.

Atg9 co-locates with endosomes following the induction of
autophagy (Young et al., 2006; Tang et al., 2011), adding confusion
about the precise role of Atg9 and leading to speculation about its
involvement in autophagosome maturation. Amphisome formation,
involving the heterotypic fusion of autophagosomes and
endosomes, is known to utilise a range of vesicular machinery
including, Rabl1 (Savina et al., 2005; Fader et al., 2008), the
SNARE protein VAMP3 (Fader et al., 2009) and the ESCRT
proteins Vps 28, Vps25, Vps32 and Deep Orange (Lindmo et al.,
2006; Rusten et al., 2007; Vaccari et al., 2009; Spowart and Lum,
2010). However, the exact involvement of this vesicular machinery
and the regulatory mechanism is not clear. For example, while
Rabl1 is a marker for recycling endosomes it is also detected on
multivesicular endosomes, and is involved in amphisome formation
(Fader et al., 2008; Richards et al., 2011). In addition, Rab11 has a
role in Atg9 trafficking from the plasma membrane to autophagic
compartments (Ravikumar et al., 2010; Longatti et al., 2012; Puri
et al., 2013). This trafficking of Atg9 by Rabl1l compartments
appears to be vital for autophagosome initiation, but has not been
fully investigated in relation to amphisome formation (Ravikumar
etal., 2010; Longatti et al., 2012; Puri et al., 2013). Other autophagy
initiators also have functions in autophagosome maturation; for
example, the Atgl2-AtgS initiation complex (part of the Atgl2-
Atg5-Atgl6 complex), which is involved in autophagosome
maturation via an interaction with the tethering protein TECRP1
during autolysosome formation (Chen et al., 2012). Lysosomal
fusion with the maturing autophagosome to form autolysosomes,
also involves specific vesicular machinery, including Rab7 and the
SNARE protein Syntaxin 17, which binds to SNAP-29 and VAMP7
to form a ternary complex (Fader et al., 2009; Itakura et al., 2012;
Takats et al., 2013). As the only integral membrane protein in the
core autophagy machinery, Atg9 may play a role in endosome and
lysosome recruitment, acting to facilitate vesicular fusion in manner
similar to that proposed for its role in membrane recruitment to the
phagophore (Takahashi et al., 2011).

Drosophila provides an ideal model system to investigate the role
of Atg9 in autophagy; as in the fly, autophagy is induced in response
to physiological stresses, such as nutrient restriction (Mulakkal
et al., 2014), and Atg9 RNAI silencing can reduce this autophagic
response (Pircs et al., 2012; Low et al., 2013; Nagy et al., 2013,
2014). Autophagy 1is also up-regulated during Drosophila
metamorphosis from larvae to adult-hood (Butterworth et al.,
1988; Rusten et al., 2004; Lindmo et al., 2006; Denton et al.,
2009, 2013) and autophagosomes increase in abundance in the
fat body tissue as the larvae approach puparation (Rusten et al.,
2004; Lindmo et al.,, 2006); enabling the investigation of
autophagy under natural conditions without an exogenous
stimulus. Here we have used the large size of Drosophila fat body
cells and organelles, and the capacity for genetic manipulation in the
fly, to further investigate the role of Atg9 in autophagy. In this
model we observed intraluminal vesicles in Atg8-GFP amphisomes/
autolysosomes, which co-located with the endosome marker Rab11
and lysosome marker Lampl. Upon Atg9 depletion these
intraluminal vesicles were no longer detected, suggesting that
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Atg9 has a specific role in intraluminal vesicle formation in
autophagic compartments.

RESULTS
Atg9 depletion reduced the number and size of
autophagosomes at a time point in Drosophila development
when autophagy is normally up-regulated
Drosophila Atg9 has previously been investigated in the autophagic
response to starvation and hypoxia (Pircs et al., 2012; Low et al.,
2013; Tang et al., 2013), but its involvement in developmental
autophagy has yet to be defined. Here we investigated Atg9 in relation
to either Atg8 (another autophagy marker), Rab11 (an endosomal
marker) or Lampl (an endosomal-lysosomal marker), in fat body
tissue at puparium formation (0 h PF), when autophagy is known to
be up-regulated (Rusten et al., 2004; Lindmo et al., 2006). There was
an increased amount of the Atg9 protein, detected by western blotting,
in wild-type fat body tissue at 0 h PF when compared to —4 h PF
(supplementary material Fig. SIA). At 0 h PF, Atg9 co-located with
Atg8a-GFP in fat body tissue, but not all Atg8a-GFP compartments
were positive for Atg9 (Fig. 1A-A™). At this time point Atg9 was also
detected in association with large Rab11-GFP compartments that in
most cases contained intraluminal Rabl1-GFP positive vesicles
(Fig. 1B-B™). Small Rab11 positive vesicles were also observed in
close proximity to larger Rabl1-GPF compartments and some of
these compartments contained Atg9 (Fig. 1B-B™). Atg9 was detected
in association with Lampl-GFP compartments that contained
intraluminal Lamp1-GFP positive vesicles (Fig. 1C-C™). Atg9 was
mainly detected as discrete punctate staining when associated with
Atg8, Rabl1 and Lampl compartments (Fig. 1).

To confirm that Atg9 functions in developmental autophagy the
formation of Atg8a-GFP autophagosomes was investigated
following the depletion of Atg9 by RNAI silencing. Atg9 RNAi

anti-Atg9 Merg

Fig. 1. Cellular localisation of Atg9 in Drosophila fat body during
development. Confocal micrographs showing the localisation of Atg9 at 0 h
PF, detected with an anti-Atg9 antibody (greyscale in A', B' and C'; red in A" B"
and C"), in relation to Atg8a-GFP (A), Rab11-GFP (B) and Lamp1-GFP (C).
The arrows depict the Atg9-positive signal in close proximity to GFP-positive
vesicles (A-C"). Scale bars=2 pm.
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silencing, by two independent RNAIi lines (BL34901, hereafter
referred to as Atg9RNAL Linel. and v10045, Atg9RNAL Line2)
significantly reduced the amount of Atg9 protein detected in fat
body tissue by western blotting and A7g9 mRNA measured by
qPCR (P<0.05; supplementary material Fig. S1). In control
Drosophila fat body cells at 0 h PF an average number of 14.9+
0.9 Atg8a-GFP positive compartments were detected per 1000 um?
of cell area (visualised in Fig. 2A, A" and quantified in Fig. 2G) and
70+£3% of these Atg8a-GFP positive compartments were
LysoTracker® positive (visualised in Fig. 2A,A"). These Atg8a-
GFP/LysoTracker® positive compartments had an average diameter
of 3.240.1 um (Fig. 2H), compared to 1.9+0.1 um for non-
LysoTracker® Atg8a-GFP positive compartments. Atg9 depletion

Atg8aGFP / LysoTr Atg8aGFP LysoTr

significantly reduced the number of Atg8a-GFP compartments in
Drosophila fat body cells at 0 h PF, when compared to the controls
(P<0.05; Fig. 2G; 10.4+0.7 and 9.4+0.55 compartments per
1000 um? respectively for AtgORNAI Linel apngq AtgQRNAI Line2y
While there was a reduction in the number of Atg8a-GFP
compartments following Atg9 depletion 61+4% (Atg9RNAI Lincl)
and 78+4% (Atg9RNAL Line2) of these autophagosome compartments
were still positive for LysoTracker®™ (i.e. a similar percentage to
controls; visualised in Fig. 2C,C",E,E™). However, the diameter of
these Atg8a-GFP/LysoTracker® compartments was significantly
reduced by Atg9 depletion (Fig. 2H; average diameter of 2.8+
0.1 pm in Atg9RNAL Linclang 2 6+£0.1 um in Atg9RNAi Line2,
P<0.05). The size of Atg8a-GFP only compartments was also

Atg8aGFP / LysoTr LysoTr

Atg8aGFP

o -

Fig. 2. Depletion of Atg9 by RNAi silencing reduced the number and size of autophagic compartments, but did not impair acidification. (A-F") Confocal
micrograph showing Drosophila fat body cells at 0 h PF labelled with Atg8a-GFP (green in A-F; greyscale in A'-F') and LysoTracker® (red in A-F; greyscale

in A"-F"). Representative images from; heterozygous CG-GAL4, control (A,B), CG-GAL4>UAS-Atg9"N H"e? (C D) and CG-GAL4>UAS-Atgom™NA Hne2 (£ Fy.
LD, Lipid droplet; Scale bars=5 pm. (G) Scatter plot showing the number of Atg8a-GFP compartments per 1000 um?. (H) Scatter plot showing the average size of
Atg8aGFP/LysoTracker® positive compartments. (G,H) Data is represented as meanzs.e.m. for each genotype; each cross represents quantification from one
image. Asterisks indicated significant differences between genotype as calculated by ANOVA with Dunnett post hoc test (P<0.05).
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significantly reduced in Atg9RNA! Line2 (ayerage diameter of 1.7+

0.0 pm) when compared to the controls (£<0.05), but this was not
statistically significant for Atg9RNAI Linel (ayerage diameter of 1.9+
0.1 pm).

Atg9 is required for Rab11 intraluminal vesicles and
compartmentalised acidification in amphisomes during
developmental autophagy

In control Drosophila fat body cells at 0 h PF, Atg8a-mCherry co-
located to 75+8% of large Rabl11-GFP compartments (>5 um?;
Fig. 3A-A"), which contained intraluminal Rab11-GFP vesicles
(Fig. 3A,A"). In Atg9 depleted Drosophila fat body cells at 0 h PF,
there were large Atg8a-mCherry compartments interacting with
Rab11-GFP vesicles (Fig. 3C-C™), however, there were no detectable
intraluminal Rab11-GFP vesicles in these compartments (Fig. 3C,C").

Atg8amCherry /

Rab11GFP Rab11GFP

Atg8a

mCherry

soTr Ra11GFP
E', ;

Atg gRNAi

Rab11GFP / LysoTr

In control Drosophila fat body cells, the Rab11-GFP intraluminal
vesicles were LysoTracker® positive (co-localised with Rabll;
Fig. 3E-EM), whereas in Atg9 depleted Drosophila fat body cells
the entire lumen appeared to be acidified/ LysoTracker® positive (no
Rab11 co-localisation; Fig. 3G-G"; supplementary material Fig. S2).
These LysoTracker compartments were also positive for Rab7 in
both controls and Atg9RNA! fat body tissues (supplementary material
Fig. S3) Interestingly, at an earlier developmental time point when
there is normally minimal developmental autophagy, starvation
induced autophagy resulted in similar changes to Rab11 intraluminal
compartment morphology and acidification in fat body cells from
Drosophila with Atg9®NAT silencing (supplementary material
Fig. S4); indicating that the changes to Rab11 intraluminal vesicles
and acidification were not just the result of a developmental
phenomenon. Depletion of the endosomal ESCRT-III protein

Atg8amCherry /

Rab11GFP A

BI

Rab11GFP

tg8amCherry

Rab11GFP

Fig. 3. Intraluminal Rab11 compartments were absent from autophagic compartments in Atg9 depleted fat body cells. Confocal micrographs of
Drosophila fat body cells at 0 h PF labelled with Atg8a-mCherry (red in A-D, greyscale in A'-D') and Rab11-GFP (green in A-D; greyscale in A"-D"; or Rab11-GFP
(green in E-J; greyscale in E'-J') and LysoTracker® (red in E-J; greyscale in E"-J"). Representative images from heterozygous CG-GAL4, controls (A,B,E,F),
CG-GAL4>UAS-Atg9RNAI Line2 (C,D,G,H) and CG-GAL4>UAS-Vps20RNAi (I,J). LD: Lipid droplet; Scale bars=5 pm.
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Vps20 by RNAI silencing also resulted in a loss of Rabl1-GFP
intraluminal vesicles, but the LysoTracker® was not sequested into
compartments and had a cytoplasmic distribution (Fig. 3I-I"). As
LysoTracker® is a acidotrophic dye this may suggest that the
endosomal compartments are not appropriately acidified to cause
accumalation of the dye in late endosomes or lysosomes.

Atg9 depletion reduced the size of autolysosomes and
altered the compartmentalisation of LysoTracker® and
Lamp1 intraluminal vesicles in fat body cells during
developmental autophagy

In control Drosophila fat body cells at 0 h PF, Atg8a-mCherry co-
located with Lampl-GFP compartments and many of these
Lamp1-GFP/Atg8a-mCherry positive compartments contained
intraluminal Lamp1-GFP vesicles (Fig. 4A-A'"). Co-location of
Atg8a-mCherry with Lampl-GFP was also detected in Atg9
depleted Drosophila fat body cells, but there was a more uniform
distribution of Lamp1-GFP in these compartments (Fig. 4C,CLE,
E"). In addition, in the Atg9 depleted Drosophila fat body cells the
Lamp1-GFP positive compartments were significantly smaller
(P<0.05; Fig. 41; 3.9+0.1 um in Atg9RNAiLinel and 2. 9+0.1 um in
Atg9RNAL Line2y than the controls (4.7+0.2 um). In control
Drosophila fat body cells LysoTracker™ was compartmentalised
into intraluminal vesicles within Lampl-GFP compartments
(Fig. 4E-EM), while for the Atg9 depleted Drosophila fat body
cells there was a more uniform distribution of LysoTracker® in
the Lampl-GFP compartments (Fig. 4G-G'; supplementary
material Fig. S2B). Consequently, the area of the Lampl-GFP
compartments that was acidified in Atg9 depleted Drosophila fat
body cells was greater than that in the control cells (P<0.05;
Fig. 4J). In control Drosophila fat body cells the intraluminal
vesicles within Lamp1-GFP compartments were also positive for
intraluminal Rab11 (supplementary material Fig. S4).

Atg9 depletion abrogated Rab11 intraluminal vesicle
formation and impaired midgut degradation in Drosophila
during metamorphosis

The Drosophila larval midgut is degraded by autophagy during
metamorphosis (Lee et al., 2002; Denton et al., 2009). In Atg9
depleted Drosophila midgut cells at 0 h PF, the Rab11-GFP and
LysoTracker® compartments were small and the morphology was
altered when compared to control midgut cells (Fig. SA-B').
This difference in compartment morphology was particularly
evident for LysoTracker®™, with control midgut cells having larger
compartments that contained intraluminal vesicles (Fig. SALA"
and Atg9 depleted midgut cells having smaller compartments with
little evidence of compartmentalisation (Fig. 5B',B"). TEM analysis
of Drosophila midgut cells at 0 h PF supported this altered
compartment morphology, with control midgut cells having larger
vesicles with multiple intraluminal vesicles (Fig. 5C,D), whereas
the compartments in Atg9 depleted midgut cells had either a
uniform granular appearance or only limited evidence of
intraluminal vesicles (Fig. SE,F). Consequently, there were
significantly more multivesicular structures (P<0.03) identified in
control midgut cells (12.2£1.9) than Atg9RNAT Line2 midoyt cells
(6.9£1.2). This appeared to affect autophagic degradation as at +4 h
PF the control Drosophila pupae had shorter midguts with an
average perimeter of 2273+57 pm and gastric caeca that were almost
completely degraded (Fig. 5G), whereas the midguts from Atg9RNA!
Line2 yupae were significantly longer than controls (P<0.05) with
an average perimeter of 6363+368 um and gastric caeca that
remained intact (Fig. SH).

DISCUSSION

Autophagy is a cellular degradation and recycling process that is
important during energy metabolism, lipid metabolism, physiological
stress, tissue remodelling and organism development (Singh and
Cuervo, 2011). Changes in autophagy progression have been shown
to be important in numerous human pathologies including
neurological disorders, cancer and infectious diseases (Choi et al.,
2013). Defining the mechanism and regulation of autophagy is
essential to fully understand the pathophysiology of these diseases
and this may lead to the design of new targeted therapies. Atg9 is
the only transmembrane protein known to be involved in autophagy
and it is thought to function in early autophagosome formation,
however, it localises to multiple cellular locations (Young et al., 2006;
Orsi et al., 2012; Puri et al., 2013) and is not thought to be integrated
into autophagosome membranes (Orsi et al., 2012). We have
demonstrated that Atg9 has a function relating to intraluminal
vesicle formation and is required for compartmentalised acidification
within amphisomes and autolysosomes.

In yeast, Atg9 is required for autophagy and its depletion prevents
the formation of autophagosomes that are induced by rapamycin
treatment or through nitrogen/amino acid starvation (Suzuki et al.,
2001). In mammals, the depletion of Atg9 also reduces autophagic
activity, limiting LC3-I to LC3-II lipidation, reducing the number of
early autophagic structures or LC3 puncta formed, and decreasing
the turnover of long lived proteins (Yamada et al., 2005; Young
et al., 2006; Saitoh et al., 2009; Orsi et al., 2012). Similarly, in
Drosophila, the depletion of Atg9 by RNAI silencing reduced the
number of autophagic structures detected in fat body cells following
starvation of third instar larvae and also reduced protein clearance
(Low et al., 2013; Tang et al., 2013; Nagy et al., 2014). The
reduction in both the number and the size of autophagosomes
during development, which were observed upon RNAI silencing of
Atg9 in the fat body, would be compatible with previous reports for
roles of Atg9 in membrane recruitment to the phagophore and for
membrane expansion (Suzuki et al., 2001; Yamada et al., 2005;
Young et al., 2006; Saitoh et al., 2009; Orsi et al., 2012; Lamb et al.,
2013b; Low et al., 2013; Tang et al., 2013; Nagy et al., 2014).
Although there was reduced formation of autophagosomes in 47g9
RNAI silenced fat body tissues during development, autophagic
compartments were still formed allowing us to track autophagosome
maturation in Atg9 depleted tissue.

Autophagosomes interact with endosomes and lysosomes in a
maturation process that sequentially generates amphisomes and then
autolysosomes. This autophagosome maturation process is essential
for the delivery of endolytic and exolytic acid hydrolases, as well as the
generation of the acidic conditions, which enable the degradation of
the luminal content of autophagosomes (Gordon and Seglen, 1988,
Dunn, 1990; Fengsrud et al., 1995). In mammalian cells, Atg9 has
been observed to be trafficked via the endosomal network and under
normal nutrient conditions is often associated with recycling
endosomes (Longatti et al., 2012; Orsi et al., 2012; Puri et al.,
2013). The induction of autophagy by starvation decreases the
association of Atg9 with recycling endosomes (Longatti et al., 2012;
Orsietal., 2012), but increases Atg9 localisation with late endosomes
(Young et al., 2006; Tang et al., 2011). We also observed Atg9
localised to compartments that were positive for the endosome and
lysosome markers Rabl1 and Lampl in Drosophila fat body, at a
developmental time point when autophagy is induced by hormone
signalling. These observations have led to the hypothesis that Atg9
might have a role in autophagosome maturation (Takahashi et al.,
2011; Reggiori and Tooze, 2012). We observed, however, Atg8
autophagosome acidification and co-location of Rab7, Rabl1 and
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Fig. 4. Lamp1 autophagic compartments had altered intraluminal acidification and a reduced size. (A-H") Confocal micrograph showing Drosophila fat
body cells at 0 h PF labelled with (A-D"") Atg8a-mCherry (red in A-D; greyscale in A-D') and Lamp1-GFP (green in A-D; greyscale in A"-D"); or (E-H") Lamp1-
GFP (green in E-H; greyscale in E'-H') and LysoTracker® (red in E-H; greyscale in E"-H"). Representative images from heterozygous CG-GAL4, control (A,B,D,E)
and CG-GAL4>UAS-Atg9RNA H"e2 (¢ D G H). Scale bars: 5 um. (1) Scatter plot showing size of Lamp1-GFP positive compartments (presented as a measure of
compartment diameter). (J) Scatter plot showing the size of LysoTracker® intraluminal compartments relative to Lamp1-GFP compartment. (1,J) Data is
represented as meants.e.m. for each genotype; each cross represents quantification from one image. Asterisks indicated significant differences between
genotype as calculated by ANOVA with Dunnett post hoc test (P<0.05).

Lamp1 with these compartments following Atg9 depletion, indicating  degradative organelles to form respectively amphisomes and
that amphisome and autolysosome formation was not abrogated. This  autolysosomes, was not impaired by Atg9 depletion. Despite the
implied that the recruitment of endosomes and lysosomes, and the  capacity to form amphisomes and autolysosomes, there appeared to be
vesicular fusion machinery that mediates the fusion of these a disruption to developmental autophagy and the reduced turnover of
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Control

Fig. 5. Atg9 depletion reduced the size of Rab11 and LysoTracker
compartments and prevented intraluminal vesicles in the gastric caeca,
resulting in reduced gut degradation. (A-B”) Confocal micrograph of
Drosophila midgut cells at 0 h PF labelled with Rab11-GFP (greyscale in A,B;
green in A",B"), and LysoTracker® (greyscale in A',B"; red in A"B"). Arrow
heads indicate Rab11-GFP in close proximity to LysoTracker® (A,B), white
arrows indicate enlarged LysoTracker® compartments (A), yellow arrows
depicted Rab11-GFP as large rings (A,B). Scale bar: 10 ym. (C-F) TEM
micrograph of Drosophila midgut cells at 0 h APF, illustrating subcellular
compartments containing intraluminal vesicles. Scale bar: 500 nm.

(G,H) Fluorescence image of Hoechst stained midguts from +4 h PF pupae.
Scale bar: 100 pm. Representative images from heterozygous NP1-GAL4,
control (A,C,D,G) and NP1-GAL4>UAS-Atg9™NA Hne2 (B E F H).

midgut tissue, suggesting that the degradative properties of these
compartments might still be impaired.

Impaired autophagic degradation can result from abrogated
fusion with endosome and lysosome compartments, causing either
the accumulation of autophagosomes, (Eskelinen, 2006; Lee et al.,
2007; Fader and Colombo, 2009; Fader et al., 2009) or the
enlargement of autolysosomes (Settembre et al., 2008a,b). Atg9
depletion resulted in smaller amphisomes/autolysosomes and no
apparent accumulation of autophagosomes, further indicating that
amphisomes and autolysosomes are forming in these tissues. In
Atg9 depleted tissues there were, however, significant
morphological changes to amphisomes-autolysosomes, with the

loss of intraluminal vesicles, which were detectable by Rab7,
Rab11, Lamp1 or LysoTracker®™ and a loss of intraluminal vesicles
was also noted by TEM of Drosophila midgut tissue. In late
endosomes, intraluminal vesicles are formed to allow the
internalisation of ubiquitinated proteins, membrane rafts, other
specific lipid domains and membrane receptors/cargo (Babst,
2011). Amphisomes result from the fusion of autophagosomes
with these multivesicular endosomes (Tamai et al., 2007; Fader
et al., 2008, 2009) and Rab11 multivesicular structures increase in
size and co-localise with autophagosomal markers following the
induction of autophagy (Fader et al., 2008). Atg9 localises with a
number of endosomal markers, which are associated with late
endosomes and multivesicular endosomes, including Rabl1 and
Rab7 (Denzer et al., 2000; Satoh et al., 2005; Savina et al., 2005;
Fader et al., 2008; Vanlandingham and Ceresa, 2009); and clusters
of Atg9 positive tubules/vesicles have been shown to emanate from
these multivesicular endosomes (Orsi et al., 2012). This could
suggest that Atg9 functions in intraluminal vesicle formation in
endosomes, prior to amphisome formation (Fig. 6A). The ECSRT
machinery that is required for intraluminal vesicle formation in
endosome maturation is also required for autophagosome
maturation; as RNAi depletion or mutations in the ECSRT
machinery can cause the accumulation of autophagosomes
(Filimonenko et al., 2007; Lee et al., 2007; Rusten et al., 2007,
Manil-Segalen et al., 2012). Here, RNAi depletion of the ESCRT-
III subunit Vps20, prevented the generation of acidified endosomes
and Rabll amphisomes and autolysosomes, instead generating
Rabl1l compartments similar to class E-compartments (Doyotte
et al., 2005). Paradoxically, while Atg9 RNAI affected intraluminal
vesicle formation it did not impair the formation of amphisomes and
autolysosomes, suggesting that Atg9 does not affect endosome
maturation to the same extent as the depletion of the ESCRT
machinery.

The intraluminal vesicles observed in amphisomes and
autolysosomes, were positive for Lamp1 and Atg8, proteins thought
to associate respectively with the membranes of lysosomes and
autophagosomes; in addition to Rab11 which may also be present on
multivesicular endosomes. Though Lamp1 protein has been detected
on both endosomes and lysosomes it is enriched in lysosomal
compartments and consequently preferentially associated with
autolysosomes rather than amphisomes (Schroder et al., 2010). In
Drosophila wing discs, Lampl has also been detected on the
intraluminal vesicles in multivesicular compartments (Rusten et al.,
2006) and in larval fat body Lamp] intraluminal vesicles have been
observed within Lampl/Atg8 positive compartments following
starvation (Kim et al., 2012). These intraluminal vesicles observed
in amphisomes-autolysosomes could be formed by the fusion of
autophagosomes with multivesicular endosomes (Bright et al., 2005;
Yuetal.,, 2010; Chen and Yu, 2013), but from our data we could not
exclude direct formation of intraluminal vesicles by amphisomes or
autolysosomes (Fig. 6). Intraluminal vesicle formation in the
autophagosome may facilitate cargo sorting, in a manner similar to
late endosomes. This cargo sorting may be necessary for
autophagosomes, as not all proteins targeted by autophagy are
destined for lysosomal degradation, and autophagy can also act as a
trafficking pathway for proteins such as, interleukins and lipoproteins
(Pan et al., 2008; Deretic et al., 2012; Ouimet, 2013). Intraluminal
vesicles may also be important in establishing local pH gradients, as
variations in intraluminal acidity were detected by LysoTracker®™
following Atg9 depletion.

It is speculated that the localised acidification observed in
amphisomes-autolysosomes may also be used to facilitate the
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Fig. 6. Potential role of Atg9 in autophagosome maturation. Schematic
showing the autophagic progression from initiation at the PAS, membrane
elongation to form the phagophore, membrane closure to encapsulate a
mitochondrion in the autophagosome which then fuses with a multivesicular
endosome to form an amphisome and finally fusion with a lysosome to produce
an autolysosome. (A) Atg9 potentially facilitates the formation of intraluminal
vesicle at the late endosome to form a multivesicular endosome prior to fusion
with an autophagosome. (B) Atg9 also potentially facilitates intraluminal
vesicle formation in amphisomes and autolysosome. PAS, phagophore
assembly site; Atg, autophagy related gene.

Autophagosome Amphisome
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degradation of specific cargo incorporated into autophagosomes.
The hydrolytic enzymes delivered by endosomes and lysosomes to
autophagosomes require an acidic environment to function
effectively (Mindell, 2012) and increased lysosome pH is known
to decrease protein degradation in autolysosomes (Mousavi et al.,
2001; Zhang et al., 2013; Hosogi et al., 2014). The low pH
environment of endosomes, lysosomes and autolysosomes is
controlled by vesicular H"ATPase complexes, which act as a
proton pump to facilitate acidification (Forgac, 2007). We observed
compartmentalisation of LysoTracker® in control, but not Atg9
depleted cells which may explain the reduced degradative capacity
and inability to degrade midgut tissue when Atg9 was depleted in
this tissue. Inability to distribute the H"ATPase complex to the
lumen of degradative vesicles might be central to this impaired
degradative capacity (Shen and Mizushima, 2014) and be required
to generate a localised low pH environment.

Atg9 appears to have an important functional role in intraluminal
vesicle formation and it is clear that this compartmentalisation is
required to develop an appropriately localised acidic environment
within degradative compartments. While Atg9 has a role in
intraluminal vesicle formation in endosomes, it remains to be
established whether these intraluminal vesicles can be formed
directly in amphisomes and autolysosomes (Fig. 6). Previous
studies have implied that Atg9 has a role in autophagosome
maturation, but from this study it was evident that this role might
not involve vesicular fusion with endosomes and lysosomes as
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previously suggested. Rather, Atg9 may function in the formation of
intraluminal vesicles that are required for correct amphisome and
autolysosome function. Atg9 could facilitate the recruitment of the
molecular machinery that is required for intraluminal vesicular
formation either at the late endosome to form multivesicular
endosomes or at the amphisome-autolysosome following endosome
fusion. During autophagy initiation, Atg9 has been shown to be
involved in the recruitment of a range of molecular machinery
including tethering proteins, Rab trafficking proteins and autophagy
proteins (Kakuta et al., 2012; Wang et al., 2013; Papinski and Kraft,
2014; Papinski et al., 2014), and it may play a similar role at the late
endosome or amphisome-autolysosome. This effectively adds to the
potential role of Atg9 in intracellular trafficking (Saitoh et al., 2009;
Popovic and Dikic, 2014), the induction of autophagy and PAS
coordination (Orsi et al., 2012), as well as the purported roles in
vesicular interaction and vesicle fusion (Webber and Tooze, 2010).
It remains to be established how Atg9 facilitates intraluminal vesicle
formation and compartmentalised acidification.

MATERIALS AND METHODS

Drosophila stocks

Drosophila stocks were maintained in standard medium at 25°C, with a
12:12 h light to dark schedule. The yeast GAL4-UAS system was used for
targeted gene expression (Brand and Perrimon, 1993). Fat body specific
expression of transgenes from the UAS was driven by CG-GAL4 (Asha
et al., 2003) and gut specific expression of transgenes from the UAS was
driven by NP1-GAL4 (Drosophila genetic resource center, Kyoto). Wild-
type and transgenic stock U4S-41g9"M' (stock #34901) were obtained from
the Bloomington Drosophila Stock Center (Indiana University,
Bloomington, USA). RNAi silencing stocks UAS-Atg9* 4 (stock
#v10045) and UAS-Vps20fN4 (stock #v26388) were obtained from the
Vienna Drosophila RNAi Centre (Vienna, Austria). UAS-Lamp1-GFP was
obtained from Helmut Kramer (Center for Basic Neuroscience, Dallas,
USA; Pulipparacharuvil et al., 2005). The autophagy markers Atg8a-GFP
and Atg8a-Cherry were driven by an endogenous promoter and kindly
provided prior to publication by Erik Bachrecke (University of
Massachusetts, Medical School, MA, USA). UAS-Rabll-GFP was
obtained from Markos Gonzalez-Gaitan (University of Geneva, Geneva,
Switzerland; Entchev et al., 2000; Wucherpfennig et al., 2003) and Donald
F. Ready (Purdue University, West Lafayette, USA; Satoh et al., 2005).

Gene expression and protein analysis

For quantitative real-time PCR (qQRT-PCR) analysis, RNA was isolated from
the fat body tissue of 20 larvae, using an RNAqueous® kit (Ambion,
Auston, USA) according to the manufacturer’s protocol. cDNA was
synthesized using a High Capacity RNA-to-cDNA kit (Applied Biosystems,
Waltham, USA). Quantitative RT-PCR was performed using a 7500 Fast
Real-Time PCR System using a Fast SYBR Green Master Mix kit (Applied
Biosystems). PCR primers were obtained from GeneWorks (Adelaide,
Australia). The following primers were used to assay the in vivo efficiency of
UAS-RNAi transgenes: Atg9 (CG 3615) forward, 5'-AGC AGA AGC ACG
GAT TCA CA-3’, and reverse, 5'-GCA GTG CAT CAC AAA GGC AA-3’
and rp49 (CG7939, used as an endogenous control) forward, 5'-CGAGT-
TGAACTGCCTTCAAGATGACCA-3', reverse 5-GCTTGGTGCGCTT-
CTTCACGATCT-3". Three independent biological samples were analysed
for each genotype, and the mRNA expression levels were normalized
against the endogenous control gene rp49, using the AACt method.

For western blotting, the fat body tissue was extracted from 10-15 either
late 3rd larval instars [—4 h from puparium formation (=4 h PF)] or newly
formed white pupae (0 h PF) using a previously described method (Shandala
et al., 2011). Larval development was determined according to the method
described by Andres and Thummel (1994). For immunoblotting, protein was
separated by SDS-PAGE (30 pug protein load) and then transferred to
nitrocellulose membranes (Shandala et al., 2011). The membranes were
probed with either rabbit anti-Atg9 antibody at 1/200 (Novus Biologicals,
Littleton, USA) or for a loading control goat anti-GADH at 1/1000 (Imgenex,
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Littleton USA) primary antibodies and a horseradish-posixidate conjugate
secondary antibody. Proteins were visualised using Novex® electro
chemiluminescent substrate reagent kit (Life Technology, Carlsbad, USA)
and imaged using a ImageQuant™ LAS 4000 imager, software version
1.2.0.101 (GE Healthcare Bioscience, Parramatta, Australia). Quantification
was performed using AlphaViewSA™ software version 3.0 (ProteinSimple,
Santa Clara, USA).

Immunostaining and microscopy

For immunostaining, Drosophila fat body tissue was mounted on a
microscope slide and fixed in 2% (v/v) paraformaldehyde in PBS, for one
hour on ice. The slides were then washed in 0.1% (v/v) Tween 20 (Sigma-
Aldrich, St Louis, USA) in PBS for 30 min. Non-specific interactions were
blocked by incubating the tissues with 5% (v/v) BSA (Sigma-Aldrich) and
0.1% (v/v) Tween 20 in PBS for 30 min, before incubation with rabbit anti-
Atg9 antibody (1/50; Novus Biologicals, Littleton, USA) or goat anti-
Rabl1 antibodies (1/100; obtained from Robert S. Cohen, University of
Kansas; (Dollar et al., 2002), diluted in 0.1% (v/v) Tween 20 and 5% (v/v)
BSA in PBS for two hours at RT and then overnight at 4°C. The tissues/
slides were washed in 0.1% (v/v) Tween in PBS for 40 min and then incubated
with either goat anti-rabbit IgG or donkey anti-goat IgG, secondary Cy5
labelled antibodies (Jackson ImmunoResearch Laboratories, West Grove,
USA), for two hours at RT. The slides were washed in 0.1% (v/v) Tween 20 in
PBS for 40 min and then mounted in 80% (v/v) glycerol in PBS. For live cell
imaging Drosophila fat body and gut tissues were stained with LysoTracker®
Red (1/200; Life Technology) for two minutes, then mounted in carbomer-
940 (Snowdrift Farm, Tucson, USA) based optical coupling gel (Rothstein
et al., 2006). Imaging was performed using a Zeiss LSM710 NLO confocal
microscope equipped with Argon-gas and 543 nm and 633 nm solid-state
lasers (Zeiss, Oberkochen, Germany) and a two-photon Mai-Tai®, tuneable
Ti:Sapphire femtosecond pulse laser (Spectra-Physics, St Clara, USA).
Images were captured using a 63x oil immersion lens. Each confocal
micrograph represented 1.5 um thin optical sections.

For gut length analysis, the midguts were dissected from +4 h PF larvae
into PBS and fixed in 4% (v/v) paraformaldehyde (Denton et al., 2009).
Tissues were stained with Hoechst 33258 (Invitrogen, USA) and imaged
with an Olympus IX71 epifluorescence microscope (Olympus, Japan).
Tissues for transmission electron microscopy (TEM) analysis were prepared
as described previously (Kohler et al., 2009) and viewed with an FEI Tecnai
G2 Spirit TEM (FEIL, Hillsboro, USA).

Image analysis

Analysis of compartment number and size was performed using Volocity®
3D Imaging Software (PerkinElmer, Waltham, USA). For each genotype
and marker combination, micrographs from a minimum of 10 biological
replicates were each analysed over an area of 2025 um?. For the analysis of
the number and size of Atg8a-GFP compartments an object finder function
was used, allowing automated detection based on compartment intensity at a
specific threshold. Lamp1-GFP compartments were measured manually as
the sub-compartmentalisation did not allow for automated detection. To
assess the changes in Lamp1-GFP intraluminal compartments, a region of
interest or ROI was drawn around the Lamp1-GFP compartment, and object
finder was used to measure the area of the intraluminal compartments filled
with LysoTracker™. An average number of 13 Lamp1-GFP compartments
were measured per micrograph (range 8-38). The data was presented as a
meants.e.m, and the treatment groups compared by ANOVA analysis in
GraphPad Prism with Dunnett post-hoc analysis (Prism software, version
6.01, USA).

The length around the perimeter of the midgut (from the foregut/
midgut to midgut/foregut junction) was used to define midgut length and
analysed using AnalySIS Software (Olympus, Shinjuku, Japan). At least
12 midguts from each genotype were examined. The data was presented as a
meands.e.m. and the different genotypes compared by a Student’s #-test
using GraphPad Prism. The number of multivesicular structures
(intracellular compartments that contained smaller intraluminal vesicles)
in each midgut was determined manually from a total of 13 TEM images,
from three independent biological replicates for each genotype, and
involved a capture field view of 8.5 umx8.5 um, at 11,500x magnification.
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