Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/119867
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHoffmann, S.A.-
dc.contributor.authorHao, N.-
dc.contributor.authorShearwin, K.E.-
dc.contributor.authorArndt, K.M.-
dc.date.issued2019-
dc.identifier.citationACS Synthetic Biology, 2019; 8(3):466-473-
dc.identifier.issn2161-5063-
dc.identifier.issn2161-5063-
dc.identifier.urihttp://hdl.handle.net/2440/119867-
dc.description.abstractAntisense transcription is common in naturally occurring genomes and is increasingly being used in synthetic genetic circuitry as a tool for gene expression control. Mutual influence on the expression of convergent genes can be mediated by antisense RNA effects and by transcriptional interference (TI). We aimed to quantitatively characterize long-range TI between convergent genes with untranslated intergenic spacers of increasing length. After controlling for antisense RNA-mediated effects, which contributed about half of the observed total expression inhibition, the TI effect was modeled. To achieve model convergence, RNA polymerase processivity and collision resistance were assumed to be modulated by ribosome trailing. The spontaneous transcription termination rate in regions of untranslated DNA was experimentally determined. Our modeling suggests that an elongating RNA polymerase with a trailing ribosome is about 13 times more likely to resume transcription than an opposing RNA polymerase without a trailing ribosome, upon head-on collision of the two.-
dc.description.statementofresponsibilityStefan A. Hoffmann, Nan Hao, Keith E. Shearwin, and Katja M. Arndt-
dc.language.isoen-
dc.publisherAmerican Chemical Society-
dc.rights© 2019 American Chemical Society-
dc.source.urihttp://dx.doi.org/10.1021/acssynbio.8b00477-
dc.subjectGene regulation; antisense transcription; transcriptional interference; mathematical modeling; Escherichia coli-
dc.titleCharacterizing transcriptional interference between converging genes in bacteria-
dc.typeJournal article-
dc.identifier.doi10.1021/acssynbio.8b00477-
dc.relation.granthttp://purl.org/au-research/grants/arc/DE150100091-
dc.relation.granthttp://purl.org/au-research/grants/arc/DP150103009-
pubs.publication-statusPublished-
dc.identifier.orcidHao, N. [0000-0001-5836-3507]-
dc.identifier.orcidShearwin, K.E. [0000-0002-7736-2742]-
Appears in Collections:Aurora harvest 8
Molecular and Biomedical Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.