Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/121625
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMennes, M.-
dc.contributor.authorJenkinson, M.-
dc.contributor.authorValabregue, R.-
dc.contributor.authorBuitelaar, J.K.-
dc.contributor.authorBeckmann, C.-
dc.contributor.authorSmith, S.-
dc.date.issued2014-
dc.identifier.citationNeuroImage, 2014; 98:513-520-
dc.identifier.issn1053-8119-
dc.identifier.issn1095-9572-
dc.identifier.urihttp://hdl.handle.net/2440/121625-
dc.description.abstractWhen defining an MRI protocol, brain researchers need to set multiple interdependent parameters that define repetition time (TR), voxel size, field-of-view (FOV), etc. Typically, researchers aim to image the full brain, making the expected FOV an important parameter to consider. Especially in 2D-EPI sequences, non-wasteful FOV settings are important to achieve the best temporal and spatial resolution. In practice, however, imperfect FOV size estimation often results in partial brain coverage for a significant number of participants per study, or, alternatively, an unnecessarily large voxel-size or number of slices to guarantee full brain coverage. To provide normative FOV guidelines we estimated population distributions of brain size in the x-, y-, and z-direction using data from 14,781 individuals. Our results indicated that 11mm in the z-direction differentiate between obtaining full brain coverage for 90% vs. 99.9% of participants. Importantly, we observed that rotating the FOV to optimally cover the brain, and thus minimize the number of slices needed, effectively reduces the required inferior-superior FOV size by ~5%. For a typical adult imaging study, 99.9% of the population can be imaged with full brain coverage when using an inferior-superior FOV of 142mm, assuming optimal slice orientation and minimal within-scan head motion. By providing population distributions for brain size in the x-, y-, and z-direction we improve the potential for obtaining full brain coverage, especially in 2D-EPI sequences used in most functional and diffusion MRI studies. We further enable optimization of related imaging parameters including the number of slices, TR and total acquisition time.-
dc.description.statementofresponsibilityMaarten Mennes, Mark Jenkinson, Romain Valabregue, Jan K. Buitelaara, Christian Beckmann, Stephen Smith-
dc.language.isoen-
dc.publisherElsevier-
dc.rights© 2014 Elsevier Inc. All rights reserved.-
dc.source.urihttp://dx.doi.org/10.1016/j.neuroimage.2014.04.030-
dc.subjectBrain-
dc.subjectHumans-
dc.subjectMagnetic Resonance Imaging-
dc.subjectDiffusion Magnetic Resonance Imaging-
dc.subjectDemography-
dc.subjectAdolescent-
dc.subjectAdult-
dc.subjectAged-
dc.subjectAged, 80 and over-
dc.subjectMiddle Aged-
dc.subjectChild-
dc.subjectChild, Preschool-
dc.subjectFemale-
dc.subjectMale-
dc.subjectYoung Adult-
dc.subjectNeuroimaging-
dc.titleOptimizing full-brain coverage in human brain MRI through population distributions of brain size-
dc.typeJournal article-
dc.identifier.doi10.1016/j.neuroimage.2014.04.030-
pubs.publication-statusPublished-
dc.identifier.orcidJenkinson, M. [0000-0001-6043-0166]-
Appears in Collections:Aurora harvest 4
Computer Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.