Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/131988
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, L.-
dc.contributor.authorZhang, W.-
dc.contributor.authorWang, X.-
dc.contributor.authorZhang, S.-
dc.contributor.authorLiu, Y.-
dc.contributor.authorLi, M.-
dc.contributor.authorZhu, G.-
dc.contributor.authorZheng, Y.-
dc.contributor.authorZhang, Q.-
dc.contributor.authorZhou, T.-
dc.contributor.authorPang, W.K.-
dc.contributor.authorLuo, W.-
dc.contributor.authorGuo, Z.-
dc.contributor.authorYang, J.-
dc.date.issued2019-
dc.identifier.citationACS Nano, 2019; 13(7):7939-7948-
dc.identifier.issn1936-0851-
dc.identifier.issn1936-086X-
dc.identifier.urihttps://hdl.handle.net/2440/131988-
dc.description.abstractDue to the abundant potassium resource on the Earth’s crust, researchers now have become interested in exploring high-performance potassium-ion batteries (KIBs). However, the large size of K+ would hinder the diffusion of K ions into electrode materials, thus leading to poor energy/power density and cycling performance during the depotassiation/potassiation process. So, few-layered V5S8 nanosheets wrapping a hollow carbon sphere fabricated via a facile hollow carbon template induced method could reversibly accommodate K storage and maintain the structure stability. Hence, the as-obtained V5S8@C electrode enables rapid and reversible storage of K+ with a high specific capacity of 645 mAh/g at 50 mA/g, a high rate capability, and long cycling stability, with 360 and 190 mAh/g achieved after 500 and 1000 cycles at 500 and 2000 mA/g, respectively. The excellent electrochemical performance is superior to the most existing electrode materials. The DFT calculations reveal that V5S8 nanosheets have high electrical conductivity and low energy barriers for K+ intercalation. Furthermore, the reaction mechanism of the V5S8@C electrode in KIBs is probed via the in operando synchrotron X-ray diffraction technique, and it indicates that the V5S8@C electrode undergoes a sequential intercalation (KV5S8) and conversion reactions (K2S3) reversibly during the potassiation process.-
dc.description.statementofresponsibilityLi Li, Wenchao Zhang, Xing Wang, Shilin Zhang, Yajie Liu, Minhan Li, Guanjia Zhu, Yang Zheng, Qing Zhang, Tengfei Zhou, Wei Kong Pang, Wei Luo, Zaiping Guo and Jianping Yang-
dc.language.isoen-
dc.publisherAmerican Chemical Society-
dc.rights© 2019 American Chemical Society-
dc.source.urihttp://dx.doi.org/10.1021/acsnano.9b02384-
dc.subjectpotassium-ion batteries-
dc.subjectanode materials-
dc.subjecthigh power density-
dc.subjectcycling stability-
dc.subjectV5S8 nanosheets-
dc.titleHollow-carbon-templated few-layered V₅S₈ nanosheets enabling ultrafast potassium storage and long-term cycling-
dc.title.alternativeHollow-carbon-templated few-layered V5S8 nanosheets enabling ultrafast potassium storage and long-term cycling-
dc.typeJournal article-
dc.identifier.doi10.1021/acsnano.9b02384-
pubs.publication-statusPublished-
dc.identifier.orcidZhang, S. [0000-0002-3268-5708]-
dc.identifier.orcidGuo, Z. [0000-0003-3464-5301]-
Appears in Collections:Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.