Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/132055
Citations
Scopus Web of Science® Altmetric
?
?
Type: Conference paper
Title: Cost-effectiveness of medically assisted reproduction or expectant management for unexplained subfertility: when to start treatment?
Author: Van Eekelen, R.
Eijkemans, M.J.
Mochtar, M.
Mol, F.
Mol, B.W.
Groen, H.
Van Wely, M.
Citation: Human Reproduction, 2020, vol.35, iss.9, pp.2037-2046
Publisher: Oxford University Press
Issue Date: 2020
ISSN: 0268-1161
1460-2350
Conference Name: 36th Virtual Annual Meeting of the European-Society-of-Human-Reproduction-and-Embryology (ESHRE) as published in Human Reproduction (5 Jul 2020 - 8 Jul 2020 : Electronic Network)
Statement of
Responsibility: 
R van Eekelen, M J Eijkemans, M Mochtar, F Mol, B W Mol, H Groen, M van Wely
Abstract: STUDY QUESTION Over a time period of 3 years, which order of expectant management (EM), IUI with ovarian stimulation (IUI-OS) and IVF is the most cost-effective for couples with unexplained subfertility with the female age below 38 years? SUMMARY ANSWER If a live birth is considered worth €32 000 or less, 2 years of EM followed by IVF was the most cost-effective, whereas above €32 000 this was 1 year of EM, 1 year of IUI-OS and then 1 year of IVF. WHAT IS KNOWN ALREADY IUI-OS and IVF are commonly used fertility treatments for unexplained subfertility although many couples can conceive naturally, as no identifiable barrier to conception could be found by definition. Few countries have guidelines on when to proceed with medically assisted reproduction (MAR), mostly based on the expected probability of live birth after treatment, but there is a lack of evidence to support the strategies proposed by these guidelines. The increased uptake of IUI-OS and IVF over the past decades and costs related to reimbursement of these treatments are pressing concerns to health service providers. For MAR to remain affordable, sustainable and a responsible use of public funds, guidance is needed on the cost-effectiveness of treatment strategies for unexplained subfertility, including EM. STUDY DESIGN, SIZE, DURATION We developed a decision analytic Markov model that follows couples with unexplained subfertility of which the woman is under 38 years of age for a time period of 3 years from completion of the fertility workup onwards. We divided the time axis of 3 years into three separate periods, each comprising 1 year. The model was based on contemporary evidence, most notably the dynamic prediction model for natural conception, which was combined with MAR treatment effects from a network meta-analysis on randomized controlled trials. We changed the order of options for managing unexplained subfertility for the 1 year periods to yield five different treatment policies in total: IVF-EM-EM (immediate IVF), EM-IVF-EM (delayed IVF), EM-EM-IVF (postponed IVF), IUIOS-IVF-EM (immediate IUI-OS) and EM-IUIOS-IVF (delayed IUI-OS). PARTICIPANTS/MATERIALS, SETTING, METHODS The main outcomes per policy over the 3-year period were the probability of live birth, the average treatment and delivery costs, the probability of multiple pregnancy, the incremental cost-effectiveness ratio (ICER) and finally, which policy yields the highest net benefit in which costs for a policy were deducted from the health effects, i.e. live births gained. We chose the Dutch societal perspective, but the model can be easily modified for other locations or other perspectives. The probability of live birth after EM was taken from the dynamic prediction model for natural conception and updated for Years 2 and 3. The relative effects of IUI-OS and IVF in terms of odds ratios, taken from the network meta-analysis, were applied to the probability of live birth after EM. We applied standard discounting procedures for economic analyses for Years 2 and 3. The uncertainty around effectiveness, costs and other parameters was assessed by probabilistic sensitivity analysis in which we drew values from distributions and repeated this procedure 20 000 times. In addition, we changed model assumptions to assess their influence on our results. MAIN RESULTS AND THE ROLE OF CHANCE From IVF-EM-EM to EM-IUIOS-IVF, the probability of live birth varied from approximately 54–64% and the average costs from approximately €4000 to €9000. The policies IVF-EM-EM and EM-IVF-EM were dominated by EM-EM-IVF as the latter yielded a higher cumulative probability of live birth at a lower cost. The policy IUIOS-IVF-EM was dominated by EM-IUIOS-IVF as the latter yielded a higher cumulative probability of live birth at a lower cost. After removal of policies that were dominated, the ICER for EM-IUIOS-IVF was approximately €31 000 compared to EM-EM-IVF. The range of ICER values between the lowest 25% and highest 75% of simulation replications was broad. The net benefit curve showed that when we assume a live birth to be worth approximately €20 000 or less, the policy EM-EM-IVF had the highest probability to achieve the highest net benefit. Between €20 000 and €50 000 monetary value per live birth, it was uncertain whether EM-EM-IVF was better than EM-IUIOS-IVF, with the turning point of €32 000. When we assume a monetary value per live birth over €50 000, the policy with the highest probability to achieve the highest net benefit was EM-IUIOS-IVF. Results for subgroups with different baseline prognoses showed the same policies dominated and the same two policies that were the most likely to achieve the highest net benefit but at different threshold values for the assumed monetary value per live birth. LIMITATIONS, REASONS FOR CAUTION Our model focused on population level and was thus based on average costs for the average number of cycles conducted. We also based the model on a number of key assumptions. We changed model assumptions to assess the influence of these assumptions on our results. The change in relative effectiveness of IVF over time was found to be highly influential on results and their interpretation. WIDER IMPLICATIONS OF THE FINDINGS EM-EM-IVF and EM-IUIOS-IVF followed by IVF were the most cost-effective policies. The choice depends on the monetary value assigned to a live birth. The results of our study can be used in discussions between clinicians, couples and policy makers to decide on a sustainable treatment protocol based on the probability of live birth, the costs and the limitations of MAR treatment. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the ZonMw Doelmatigheidsonderzoek (80-85200-98-91072). The funder had no role in the design, conduct or reporting of this work. B.W.M. is supported by a NHMRC Practitioner Fellowship (GNT1082548). B.W.M. reports consultancy for ObsEva, Merck KGaA and Guerbet and travel and research support from ObsEva, Merck and Guerbet. TRIAL REGISTRATION NUMBER N/A.
Keywords: Medically assisted reproduction; unexplained subfertility; IVF; IUI; expectant management; cost-effectiveness; decision analytic model; Markov model; decision tree
Rights: VC The Author(s) 2020. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
DOI: 10.1093/humrep/deaa158
Grant ID: http://purl.org/au-research/grants/nhmrc/1082548
Published version: https://academic.oup.com/humrep/article/35/9/2037/5900467
Appears in Collections:Obstetrics and Gynaecology publications

Files in This Item:
File Description SizeFormat 
hdl_132055Published version209.79 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.