Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/138877
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhu, C.-
dc.contributor.authorHe, Q.-
dc.contributor.authorYao, H.-
dc.contributor.authorLe, S.-
dc.contributor.authorChen, W.-
dc.contributor.authorChen, C.-
dc.contributor.authorWang, S.-
dc.contributor.authorDuan, X.-
dc.date.issued2022-
dc.identifier.citationEnvironmental Research, 2022; 204(Part D):112368-1-112368-9-
dc.identifier.issn0013-9351-
dc.identifier.issn1096-0953-
dc.identifier.urihttps://hdl.handle.net/2440/138877-
dc.descriptionAvailable online 11 November 2021-
dc.description.abstractDeveloping novel heterojunction photocatalysts with visible-light response and remarkable photocatalytic activity have been verified to applying for the photodegradation of antibiotics in water environment. Herein, NH₂- MIL-125(Ti) was integrated with flowerlike Znln₂S₄ to construct NH₂-MIL-125(Ti)@Znln₂S₄ heterostructure using a one-pot solvothermal method. The photocatalytic performance was evaluated by the degradation of tetracycline (TC) under visible light illumination. The optimized NM(2%)@ZIS possesses a photodegradation rate (92.8%) and TOC removal efficiency (58.5%) superior to pristine components, which can be principally attributed to the positive cooperative effects of well-matched energy level positions, strong visible-lightharvesting capacity, and abundant coupling interfaces between the two. Moreover, the probable TC degradation mechanism was also clarified using the active species trapping experiments. This study inspires further design and construction of NH₂-MIL-125(Ti) and Znln₂S₄ based photocatalysts for effective removal of antibiotics in water environment.-
dc.description.statementofresponsibilityChengzhang Zhu, Qiuying He, Haiqian Yao, Shukun Le, Wenxia Chen, Chuanxiang Chen, Shaobin Wang, Xiaoguang Duan-
dc.language.isoen-
dc.publisherElsevier-
dc.rights© 2021 Elsevier Inc. All rights reserved.-
dc.source.urihttp://dx.doi.org/10.1016/j.envres.2021.112368-
dc.subjectNH₂-MIL-125(Ti)@Znln₂S₄; Interfacial interactions; Heterostructure; Photocatalytic degradation; Tetracycline-
dc.subject.meshTitanium-
dc.subject.meshTetracycline-
dc.subject.meshCatalysis-
dc.subject.meshLight-
dc.titleAmino-functionalized NH₂-MIL-125(Ti)-decorated hierarchical flowerlike Znln₂S₄ for boosted visible-light photocatalytic degradation-
dc.title.alternativeAmino-functionalized NH2-MIL-125(Ti)-decorated hierarchical flowerlike Znln2S4 for boosted visible-light photocatalytic degradation-
dc.typeJournal article-
dc.identifier.doi10.1016/j.envres.2021.112368-
dc.relation.granthttp://purl.org/au-research/grants/arc/DE210100253-
pubs.publication-statusPublished-
dc.identifier.orcidWang, S. [0000-0002-1751-9162]-
dc.identifier.orcidDuan, X. [0000-0001-9635-5807]-
Appears in Collections:Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.