Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/140487
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Constraining the geothermal parameters of in situ Rb–Sr dating on Proterozoic shales and their subsequent applications
Author: Subarkah, D.
Nixon, A.L.
Jimenez, M.
Collins, A.S.
Blades, M.L.
Farkaš, J.
Gilbert, S.E.
Holford, S.
Jarrett, A.
Citation: Geochronology, 2022; 4(2):577-600
Publisher: Copernicus GmbH
Issue Date: 2022
ISSN: 2628-3697
2628-3719
Statement of
Responsibility: 
Darwinaji Subarkah, Angus L. Nixon, Monica Jimenez, Alan S. Collins, Morgan L. Blades, Juraj Farkaš, Sarah E. Gilbert, Simon Holford, and Amber Jarrett
Abstract: Recent developments in tandem laser ablation mass spectrometer technology have demonstrated the capacity for separating parent and daughter isotopes of the same mass online. As a result, beta-decay chronometers can now be applied to the geological archive in situ as opposed to through traditional whole-rock digestions. One novel application of this technique is the in situ Rb–Sr dating of Proterozoic shales that are dominated by authigenic clays such as illite. This method can provide a depositional window for shales by differentiating signatures of early diagenetic processes versus late-stage secondary alteration. However, the hydrothermal sensitivity of the Rb–Sr isotopic system across geological timescales in shale-hosted clay minerals is not well understood. As such, we dated the Mesoproterozoic Velkerri Formation from the Altree 2 well in the Beetaloo Sub-basin (greater McArthur Basin), northern Australia, using this approach. We then constrained the thermal history of these units using common hydrocarbon maturity indicators and modelled effects of contact heating due to the intrusion of the Derim Derim Dolerite. In situ Rb–Sr dating of mature, oil-prone shales in the diagenetic zone from the Velkerri Formation yielded ages of 1448 ± 81, 1434 ± 19, and 1421 ± 139 Ma. These results agree with previous Re–Os dating of the unit and are interpreted as recording the timing of an early diagenetic event soon after deposition. Conversely, overmature, gasprone shales in the anchizone sourced from deeper within the borehole were dated at 1322 ± 93 and 1336 ± 40 Ma. These ages are younger than the expected depositional window for the Velkerri Formation. Instead, they are consistent with the age of the Derim Derim Dolerite mafic intrusion intersected 800 m below the Velkerri Formation. Thermal modelling suggests that a single intrusion of 75 m thickness would have been capable of producing a significant hydrothermal perturbation radiating from the sill top. The intrusion width proposed by this model is consistent with similar Derim Derim Dolerite sill thicknesses found elsewhere in the McArthur Basin. The extent of the hydrothermal aureole induced by this intrusion coincides with the window in which kerogen from the Velkerri Formation becomes overmature. As a result, the mafic intrusion intersected here is interpreted to have caused kerogen in these shales to enter the gas window, induced fluids that mobilize trace elements, and reset the Rb–Sr chronometer. Consequently, we propose that the Rb–Sr chronometer in shales may be sensitive to temperatures of ca. 120 ◦C in hydrothermal reactions but can withstand temperatures of more than 190 ◦C in thermal systems not dominated by fluids. Importantly, this study demonstrates a framework for the combined use of in situ Rb–Sr dating and kerogen maturation indicators to help reveal the thermochronological history of Proterozoic sedimentary basins. As such, this approach can be a powerful tool for identifying the hydrocarbon potential of source rocks in similar geological settings.
Keywords: geothermal parameters
in situ Rb–Sr dating
Proterozoic shales
Rights: © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.
DOI: 10.5194/gchron-4-577-2022
Grant ID: http://purl.org/au-research/grants/arc/LP160101353
http://purl.org/au-research/grants/arc/LP200301457
Published version: http://dx.doi.org/10.5194/gchron-4-577-2022
Appears in Collections:Research Outputs

Files in This Item:
File Description SizeFormat 
hdl_140487.pdfPublished version8.38 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.