Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/141197
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Constraints on Ore Genesis from Trace Ore Mineralogy: A New Occurrence of Kupčíkite and Paděraite from the Zhibula Cu Skarn Deposit, Southern Tibet
Author: Xu, J.
Ciobanu, C.L.
Cook, N.J.
Gao, S.
Zhao, T.
Jiang, J.
Citation: Minerals, 2024; 14(5):474-474
Publisher: MDPI AG
Issue Date: 2024
ISSN: 2075-163X
2075-163X
Statement of
Responsibility: 
Jing Xu, Cristiana Liana Ciobanu, Nigel John Cook, Shen Gao, Taiping Zhao, and Jichen Jiang
Abstract: Mineral assemblages containing Cu-Bi sulfosalts, Bi chalcogenides, and Ag-(Au) tellurides have been identified in the mid-Miocene Zhibula Cu skarn deposit, Gangdese Belt, southern Tibet. Different mineral assemblages from three locations in the deposit, including proximal massive garnet skarn, proximal retrogressed pyroxene-dominant skarn in contact with marble, and distal banded garnet–pyroxene skarn hosted in marble, are studied to constrain the evolution of the mineralization. Hypogene bornite contains elevated Bi (mean 6.73 wt.%) and co-exists in proximal andradite skarn with a second bornite with far lower Bi content, carrollite, Au-Ag tellurides (hessite, petzite), and wittichenite. This assemblage indicates formation at relatively high temperatures (>400 ◦C) and high f S2 and f Te2 during prograde-stage mineralization. Assemblages of Bi sulfosalts (wittichenite, aikinite, kupčíkite, and paděraite) and bismuth chalcogenides (e.g., tetradymite) in proximal pyroxene skarn are also indicative of formation at relatively high temperatures, but at relatively lower f Te2 and f S2 conditions. Within the reduced distal skarn (chalcopyrite–pyrrhotite-bearing) in marble, cobalt, and nickel occur as discrete minerals: cobaltite, melonite and cobaltic pentlandite. The trace ore mineral signature of the Zhibula skarn and the distributions of precious and critical trace elements such as Ag, Au, Co, Te, Se, and Bi support an evolving magmatic–hydrothermal system in which different parts of the deposit each define ore formation at distinct local physicochemical conditions. This is the first report of kupčíkite and paděraite from a Chinese location. Their compositions are comparable to other occurrences, but conspicuously, they do not form nanoscale intergrowths with one another.
Keywords: ore mineralogy; Au-Ag tellurides; Bi chalcogenides; Cu-Bi sulfosalts; Zhibula Cu skarn; Tibet
Rights: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
DOI: 10.3390/min14050474
Published version: http://dx.doi.org/10.3390/min14050474
Appears in Collections:Research Outputs

Files in This Item:
File Description SizeFormat 
hdl_141197.pdfPublished version18.57 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.