Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/53631
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: A model for the detection of moving targets in visual clutter inspired by insect physiology
Author: Wiederman, S.
Shoemaker, P.
O'Carroll, D.
Citation: PLoS One, 2008; 3(7):1-11
Publisher: Public Library of Science
Issue Date: 2008
ISSN: 1932-6203
1932-6203
Editor: Mansvelder, H.D.
Statement of
Responsibility: 
Steven D. Wiederman, Patrick A. Shoemaker, David C. O’Carroll
Abstract: We present a computational model for target discrimination based on intracellular recordings from neurons in the fly visual system. Determining how insects detect and track small moving features, often against cluttered moving backgrounds, is an intriguing challenge, both from a physiological and a computational perspective. Previous research has characterized higher-order neurons within the fly brain, known as 'small target motion detectors' (STMD), that respond robustly to moving features, even when the velocity of the target is matched to the background (i.e. with no relative motion cues). We recorded from intermediate-order neurons in the fly visual system that are well suited as a component along the target detection pathway. This full-wave rectifying, transient cell (RTC) reveals independent adaptation to luminance changes of opposite signs (suggesting separate ON and OFF channels) and fast adaptive temporal mechanisms, similar to other cell types previously described. From this physiological data we have created a numerical model for target discrimination. This model includes nonlinear filtering based on the fly optics, the photoreceptors, the 1(st) order interneurons (Large Monopolar Cells), and the newly derived parameters for the RTC. We show that our RTC-based target detection model is well matched to properties described for the STMDs, such as contrast sensitivity, height tuning and velocity tuning. The model output shows that the spatiotemporal profile of small targets is sufficiently rare within natural scene imagery to allow our highly nonlinear 'matched filter' to successfully detect most targets from the background. Importantly, this model can explain this type of feature discrimination without the need for relative motion cues.
Keywords: Visual Pathways
Neurons
Animals
Visual Perception
Motion Perception
Contrast Sensitivity
Electrophysiology
Models, Biological
Models, Neurological
Time Factors
Computer Simulation
Computers
Software
Vision, Ocular
Insecta
Rights: © 2008 Wiederman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
DOI: 10.1371/journal.pone.0002784
Published version: http://dx.doi.org/10.1371/journal.pone.0002784
Appears in Collections:Aurora harvest 5
Molecular and Biomedical Science publications

Files in This Item:
File Description SizeFormat 
hdl_ 53631.pdfPublished version600.22 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.