Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/61390
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Effect of high-molecular-weight glutenin allele, Glu-B1d, from synthetic hexaploid wheat on wheat quality parameters and dry, white Chinese noodle-making quality
Author: Tang, Y.
Yang, W.
Wu, Y.
Li, C.
Li, J.
Zou, Y.
Chen, F.
Mares, D.
Citation: Crop and Pasture Science, 2010; 61(4):310-320
Publisher: CSIRO Publishing
Issue Date: 2010
ISSN: 1836-5795
1836-5795
Statement of
Responsibility: 
Yonglu Tang, Wuyun Yang, Yuanqi Wu, Chaosu Li, Jun Li, Yuchun Zou, Fang Chen and Daryl Mares
Abstract: Synthetic hexaploid wheat (SHW) represents a valuable source of new resistances to a range of biotic and abiotic stresses. Exploitation of these resistances in bread wheat breeding programs, however, is not necessarily straightforward and requires an assessment of potential negative effects on quality particularly from the genomes contributed by the durum parents used in the development of SHW. In particular, high-molecular-weight glutenin subunits (HMW-GS) 6+8 that are common in durum and SHW but, in bread wheat, are present at only a very low frequency in Chinese wheat cultivars and landraces and as a result there is only limited data on the effects of HMW-GS 6+8 on wheat processing quality and especially on dry, white Chinese noodles (DWCN). In this study, 131 recombinant inbred lines (RIL) were developed from a cross between a CIMMYT SHW ‘Syn-CD780’ and an elite Sichuan common wheat cultivar ‘ChuanYu12’.The aim of this study was to investigate the effect of the HMW glutenin allele, Glu-B1d (6+8), from SHW on quality-related characteristics and DWCN making quality compared with the alternate allele Glu-B1u (7*+8). The RIL and parents were grown in three environments and analysed for 21 quality and noodle test parameters. Results showed the effect of Glu-B1d depended on both the parameters tested and glutenin subunit background contributed by alleles at the Glu-A1 and Glu-D1 loci. RIL with the Glu-B1d allele v. those with the Glu-B1u had significantly higher Zeleny sedimentation volume and falling number in the subunit backgrounds Glu-A1c/Glu-D1a and Glu-A1c/Glu-D1ah, significantly higher L* of dry flour in the background Glu-A1a/Glu-D1a; significantly higher dough development time, dough stability time, breakdown time and lower softness in both backgrounds Glu-A1c/Glu-D1a and Glu-A1c/Glu-D1ah; significantly higher values of most rapid visco analysis parameters, especially pronounced in the background Glu-A1c/Glu-D1a. The RIL with the Glu-B1d allele also showed significantly higher (P < 0.05) noodle total score (NTS) in the Glu-A1a/Glu-D1a background and significantly higher (P < 0.01) NTS and most components of sensory assessment in the Glu-A1c/Glu-D1a background. Overall, the results indicate that the allele Glu-B1d, 6+8, from synthetic hexaploids could, in general, have a positive influence on most bread wheat quality parameters and DWCN noodle-making, particularly when combined with particular glutenin subunits at Glu-A1 and Glu-D1.
Keywords: high-molecular-weight glutenin subunit
recombinant inbred line
synthetic hexaploid wheat
Rights: © CSIRO 2010
DOI: 10.1071/CP09362
Published version: http://dx.doi.org/10.1071/cp09362
Appears in Collections:Agriculture, Food and Wine publications
Aurora harvest

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.