Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/65042
Citations
Scopus Web of ScienceĀ® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCox, B.-
dc.contributor.authorThamwattana, N.-
dc.contributor.authorHill, J.-
dc.date.issued2008-
dc.identifier.citationProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008; 464(2091):691-710-
dc.identifier.issn1364-5021-
dc.identifier.issn1471-2946-
dc.identifier.urihttp://hdl.handle.net/2440/65042-
dc.description.abstractCarbon nanotubes are nanostructures that promise much in the area of constructing nanoscale devices due to their enhanced mechanical, electrical and thermal properties. In this paper, we examine a gigahertz oscillator that comprises a carbon nanotube oscillating in a uniform concentric ring or bundle of carbon nanotubes. A number of existing results for nanotube oscillators are employed to analyse the design considerations of optimizing such a device, and significant new results are also derived. These include a new analytical expression for the interaction per unit length of two parallel carbon nanotubes involving the Appell hypergeometric functions. This expression is employed to precisely determine the relationship between the bundle radius and the radii of the nanotubes forming the bundle. Furthermore, several pragmatic approximations are also given, including the relationships between the bundle radius and the constituent nanotube radius and the oscillating tube radius and the bundle nanotube radius. We also present a simplified analysis of the force and energy for a nanotube oscillating in a nanotube bundle leading to an expression for the oscillating frequency and the maximum oscillating frequency, including constraints on configurations under which this maximum is possible.-
dc.description.statementofresponsibilityBarry J. Cox, Ngamta Thamwattana and James M. Hill-
dc.language.isoen-
dc.publisherRoyal Soc London-
dc.rightsCopyright 2008 The Royal Society-
dc.source.urihttp://dx.doi.org/10.1098/rspa.2007.0247-
dc.subjectcarbon nanotubes-
dc.subjectgigahertz oscillators-
dc.subjectLennard-Jones potential-
dc.subjectacceptance and suction energies-
dc.titleMechanics of nanotubes oscillating in carbon nanotube bundles-
dc.typeJournal article-
dc.identifier.doi10.1098/rspa.2007.0247-
pubs.publication-statusPublished-
dc.identifier.orcidCox, B. [0000-0002-0662-7037]-
Appears in Collections:Aurora harvest 5
Mathematical Sciences publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.