Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/73682
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVisintin, P.-
dc.contributor.authorOehlers, D.-
dc.contributor.authorWu, C.-
dc.contributor.authorGriffith, M.-
dc.date.issued2012-
dc.identifier.citationEarthquake Engineering and Structural Dynamics, 2012; 41(12):1591-1608-
dc.identifier.issn0098-8847-
dc.identifier.issn1096-9845-
dc.identifier.urihttp://hdl.handle.net/2440/73682-
dc.description.abstract<jats:title>SUMMARY</jats:title><jats:p>The cyclic behaviour of plastic hinges is an essential component in tracking the behaviour of RC frames to failure, not only for monotonically increasing force/pressure loads such as under extreme wind loads but also for dynamic displacement‐driven loads such as under earthquake ground motions. To describe member deformations at ultimate loading, traditional moment–curvature techniques have required the use of an empirical hinge length to predict rotations, and despite much research a definitive generic expression for this empirical hinge length is yet to be defined. To overcome this problem, a discrete rotation approach, which directly quantifies the rotation between crack faces using mechanics, has been developed for beams and been shown to be accurate under monotonic loading. In this paper, the discrete rotation approach for monotonic loads is extended to cope with cyclic loads for dynamic analyses, and this has led to the development of a new partial interaction numerical simulation capable of allowing for reversals of slip of the reinforcing bars. This numerical tool should be very useful for the nonlinear analysis of reinforced concrete beams and reinforced concrete columns with small axial loads under severe dynamic loads. Copyright © 2011 John Wiley &amp; Sons, Ltd.</jats:p>-
dc.description.statementofresponsibilityPhillip Visintin, Deric J. Oehlers, Chengwing Wu and Michael C Griffith-
dc.language.isoen-
dc.publisherJohn Wiley & Sons Ltd-
dc.rightsCopyright © 2011 John Wiley & Sons, Ltd.-
dc.source.urihttp://dx.doi.org/10.1002/eqe.1189-
dc.subjectreinforced concrete-
dc.subjecthinges-
dc.subjectductility-
dc.subjectdiscrete rotation-
dc.subjectcyclic loads-
dc.subjecthysteretic behaviour-
dc.titleThe reinforcement contribution to the cyclic behaviour of reinforced concrete beam hinges-
dc.typeJournal article-
dc.identifier.doi10.1002/eqe.1189-
pubs.publication-statusPublished-
dc.identifier.orcidVisintin, P. [0000-0002-4544-2043]-
dc.identifier.orcidGriffith, M. [0000-0001-9010-3764]-
Appears in Collections:Aurora harvest 5
Civil and Environmental Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.