Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/94873
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Comparison of leaf sheath transcriptome profiles with physiological traits of bread wheat cultivars under salinity stress
Author: Takahashi, F.
Tilbrook, J.
Trittermann, C.
Berger, B.
Roy, S.
Seki, M.
Shinozaki, K.
Tester, M.
Citation: PLoS One, 2015; 10(8):e0133322-1-e0133322-23
Publisher: Public Library of Science
Issue Date: 2015
ISSN: 1932-6203
1932-6203
Editor: Yang, G.
Statement of
Responsibility: 
Fuminori Takahashi, Joanne Tilbrook, Christine Trittermann, Bettina Berger, Stuart J. Roy, Motoaki Seki, Kazuo Shinozaki, Mark Tester
Abstract: Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum) that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early "osmotic" phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions.
Keywords: Triticum
Plant Leaves
Plant Shoots
Sodium Chloride
Plant Proteins
Oligonucleotide Array Sequence Analysis
Cluster Analysis
Reverse Transcriptase Polymerase Chain Reaction
Biomass
Gene Expression Regulation, Plant
Genes, Plant
Salinity
Stress, Physiological
Transcriptome
Seedlings
Plant Breeding
Salt Tolerance
Rights: © 2015 Takahashi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
DOI: 10.1371/journal.pone.0133322
Grant ID: ARC
Published version: http://dx.doi.org/10.1371/journal.pone.0133322
Appears in Collections:Agriculture, Food and Wine publications
Aurora harvest 3

Files in This Item:
File Description SizeFormat 
hdl_94873.pdfPublished version1.66 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.