Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/99981
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Pharmacological characterization of the opioid inactive isomers (+)-naltrexone and (+)-naloxone as antagonists of toll-like receptor 4
Author: Wang, X.
Zhang, Y.
Peng, Y.
Hutchinson, M.
Rice, K.
Yin, H.
Watkins, L.
Citation: British Journal of Pharmacology, 2016; 173(5):856-869
Publisher: Wiley
Issue Date: 2016
ISSN: 0007-1188
1476-5381
Statement of
Responsibility: 
X Wang, Y Zhang, Y Peng, M R Hutchinson, K C Rice, H Yin and L R Watkins
Abstract: Background and Purpose: The toll-like receptor TLR4 is involved in neuropathic pain and in drug reward and reinforcement. The opioid inactive isomers (+)-naltrexone and (+)-naloxone act as TLR4 antagonists, reversing neuropathic pain and reducing opioid and cocaine reward and reinforcement. However, how these agents modulate TLR4 signalling is not clear. Here, we have elucidated the molecular mechanism of (+)-naltrexone and (+)-naloxone on TLR4 signalling. Experimental Approach: BV-2 mouse microglial cell line, primary rat microglia and primary rat peritoneal macrophages were treated with LPS and TLR4 signalling inhibitors. Effects were measured using Western blotting, luciferase reporter assays, fluorescence microscopy and ELISA. Key Results: (+)-Naltrexone and (+)-naloxone were equi-potent inhibitors of the LPS-induced TLR4 downstream signalling and induction of the pro-inflammatory factors NO and TNF-α. Similarly, (+)-naltrexone or (+)-naloxone inhibited production of reactive oxygen species and increased microglial phagocytosis, induced by LPS. However, (+)-naltrexone and (+)-naloxone did not directly inhibit the increased production of IL-1β, induced by LPS. The drug interaction of (+)-naloxone and (+)-naltrexone was additive. (+)-Naltrexone or (+)-naloxone inhibited LPS-induced activation of IFN regulatory factor 3 and production of IFN-β. However, they did not inhibit TLR4 signalling via the activation of either NF-κB, p38 or JNK in these cellular models. Conclusions and Implications: (+)-Naltrexone and (+)-naloxone were TRIF-IFN regulatory factor 3 axis-biased TLR4 antagonists. They blocked TLR4 downstream signalling leading to NO, TNF-α and reactive oxygen species. This pattern may explain, at least in part, the in vivo therapeutic effects of (+)-naltrexone and (+)-naloxone.
Keywords: Microglia
Cells, Cultured
Cell Line
Macrophages, Peritoneal
Animals
Mice
Rats, Sprague-Dawley
Nitric Oxide
Reactive Oxygen Species
Naloxone
Naltrexone
Lipopolysaccharides
Tumor Necrosis Factor-alpha
Interferon-beta
Narcotic Antagonists
Phagocytosis
Male
Toll-Like Receptor 4
Interleukin-1beta
Rights: © 2015 The British Pharmacological Society
DOI: 10.1111/bph.13394
Grant ID: http://purl.org/au-research/grants/arc/DP110100297
Published version: http://dx.doi.org/10.1111/bph.13394
Appears in Collections:Aurora harvest 7
Medicine publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.