Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/47438
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Splitting technique for analytical modelling of two-phase multicomponent flow in porous media
Author: Pires, A.
Bedrikovetski, P.
Shapiro, A.
Citation: Journal of Petroleum Science and Engineering, 2006; 51(1-2):54-67
Publisher: Elsevier Science BV
Issue Date: 2006
ISSN: 0920-4105
1873-4715
Statement of
Responsibility: 
Adolfo P. Pires, Pavel G. Bedrikovetsky, Alexander A. Shapiro
Abstract: In this paper we discuss one-dimensional models for two-phase Enhanced Oil Recovery (EOR) floods (oil displacement by gases, polymers, carbonized water, hot water, etc.). The main result presented here is the splitting of the EOR mathematical model into thermodynamical and hydrodynamical parts. The introduction of a potential associated with one of the conservation laws and its use as a new independent coordinate reduces the number of equations by one. The (n) × (n) conservation law model for two-phase n-component EOR flows in new coordinates is transformed into a reduced (n − 1) × (n − 1) auxiliary system containing just thermodynamical variables (equilibrium fractions of components, sorption isotherms) and one lifting equation containing just hydrodynamical parameters (phase relative permeabilities and viscosities). The algorithm to solve analytically the problem includes solution of the reduced auxiliary problem, solution of one lifting hyperbolic equation and inversion of the coordinate transformation. The splitting allows proving the independence of phase transitions occurring during displacement of phase relative permeabilities and viscosities. For example, the minimum miscibility pressure (MMP) and transitional tie lines are independent of relative permeabilities and phases viscosities. Relative motion of polymer, surfactant and fresh water slugs depends on sorption isotherms only. Therefore, MMP for gasflood or minimum fresh water slug size providing isolation of polymer/surfactant from incompatible formation water for chemical flooding can be calculated from the reduced auxiliary system. Reduction of the number of equations allows the generation of new analytical models for EOR. The analytical model for displacement of oil by a polymer slug with water drive is presented.
Keywords: Reservoir engineering
Enhanced oil recovery
Gas injection
Polymer flooding
Hyperbolic systems
Conservation laws
Riemann problem
Rights: Copyright © 2005 Elsevier B.V. All rights reserved.
DOI: 10.1016/j.petrol.2005.11.009
Published version: http://dx.doi.org/10.1016/j.petrol.2005.11.009
Appears in Collections:Aurora harvest
Australian School of Petroleum publications

Files in This Item:
File Description SizeFormat 
hdl_47438.pdf329.51 kBAuthor's post-printView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.